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EQUATIONS OF GEODESIC WITH AN APPROXIMATE
INFINITE SERIES (α, β)-METRIC

Il-Yong Lee*

Abstract. In the present paper, we consider the condition that is
a geodesic equation on a Finsler space with an (α, β)-metric. Next
we find the conditions that are equations of geodesic on the Finsler
space with an approximate infinite series (α, β)-metric.

1. Introduction

A Finsler metric L(α, β) in a differentiable manifold Mn is called an
(α, β)-metric, if L is a positively homogeneous function of degree one of
a Riemannian metric α = (aij(x)yiyj)1/2 and a one-form β = bi(x)yi on
Mn.

The geodesics of a two-dimensional Finsler space F 2 = (M2, L) with
an (α, β)-metric are regarded as the curves of the associated Riemannian
space R2 = (M2, α) which are bent by the differential 1-form β (cf.
[10]). M. Matsumoto and H. S. Park [11] have expressed the differential
equations of geodesics in two-dimensional Finsler spaces with a Randers
metric and a Kropina metric in the most clean form y′′ = f(x, y, y′),
respectively.

Let Fn be an n-dimensional Finsler space with the fundamental func-
tion L(x, y) and the fundamental tensor gij(x, y) = ∂̇i∂̇jL

2/2. The tan-
gent vector space Fn

x with the origin removed at every point x of Fn is a
Minkowski space with the norm L(x, y). On the other hand, Fn

x is also
regarded as a Riemannian space with the fundamental quadratic form
ds2 = gijdyidyj [14], as it is often emphasized in [6]. Therefore the con-
cept of geodesic is introduced in the Riemannian space Fn

x by applying
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to Fn
x the usual theory of calculus of variations, and a geodesic coincides

with an autoparallel curve with respect to the Riemannian connection.
In the present paper, we consider the conditions that the Finsler

space with an (α, β)-metric be geodesic. Next we find the conditions
that the Finsler space with an approximate infinite series (α, β)-metric
be equations of geodesic.

2. Priliminaries

We consider a Finsler space Fn = (M, L) with an (α, β)-metric. Then
α is a Riemannian metric and β is a 1-form in (yi) as follows:

α2 = aij(x)yiyj and β = bi(x)yi.

The space Rn = (M, α) is called the associated Riemannian space of Fn.
The regularity of α is supposed and we denote by (aij) the inverse of
(aij).

Throughout the present paper, we use the following notation as fol-
lows:

For a function L(α, β) we put

Lα =
∂L

∂α
, Lβ =

∂L

∂β
, Lαβ =

∂Lα

∂β
, etc.

For instance, we have Lαα + Lββ = L from the homogeneity of L.
The subscripts i, j, · · · , are used to denote ∂̇i, ∂̇j .
For instance, α2 = ars(x)yrys yields

ααi = airy
r, ααij + αiαj = aij , βi = bi.

If we put airy
r = Yi and airbr = Bi, then

ααij = aij − YiYj

α2
= kij

are components of the angular metric tensor of Rn.
Throughout the following we are concerned with the Levi-Civita con-

nection γ = (γj
i
k(x)) of Rn. On account of [1], we get

γj
i
k =

1
2
air(∂kajr + ∂jakr − ∂rajk),

and denote by (, ) the covariant differentiation with respect to γ.
From γ a pair connection ∗γ = (γj

i
k, γ0

i
j , 0) is induced in Fn. The

h-covariant differentiation with respect to ∗γ is also denote by (; ).
Let us list the symbols in Fn for the later use:

(a) rij = (bi,j + bj,i)/2, sij = (bi,j − bj,i)/2,
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(b) ri
j = airrrj , si

j = airsrj ,(2.1)

(c) ri = brr
r
i = Brrri, si = brs

r
i = Brsri.

It is noted that sij = (∂jbi − ∂ibj)/2 and srB
r = 0.

Let BΓ = (Gj
i
k, G

i
j , 0) be the Berwald connection of Fn and put

(2.2)
2Gi = γ0

i
0 + 2Di, Gi

j = γ0
i
j + Di

j ,

Gj
i
k = γj

i
k + Dj

i
k,

where Di
j = ∂̇jD

i and Dj
i
k = ∂̇kD

i
j . Berwald connection BΓ [6] is

uniquely determined by the system of axioms given in [13]:

(1) L-metrical, (2) Gj
i
k −Gk

i
j = 0,

(3) ∂̇kG
i
j −Gk

i
j = 0, (4) yrGr

i
j −Gi

j = 0.

Among these axioms (2)∼(4) have been satisfied by the quantities given
in the right-hand sides of (2.2). Thus we have to treat of (1) alone,
which is written as

L;i = ∂iL−Gr
i∂̇rL = L/i −Dr

iLr = 0.

Since we have

L,i = Lααi + Lββ,i = Lβbr,iy
r,

Lr = Lααr + Lββr = LαYr/α + Lβbr,

L;i = 0 is written in the form

(2.3) (LαYr + αLβbr)Dr
i = αLβbr,iy

r.

Next, we shall consider the two-dimensional case. Let us denote by
R(C) = 0 the differential equation of the Weierstrass form of a geodesic
C of R2. R(C) is given by

R(C) = αα(β) − αβ(α) + (y1ẏ2 − y2ẏ1)Wr,

where αi = ∂α/∂xi and α(i) = ∂α/∂yi, yi = dxi/dt and ẏi = dyi/dt and
Wr is the Weierstrass invariant of R2 (cf. [11]) By putting yi

;0 = ẏi+γ0
i
0,

R(C) can be written in the form

(2.4) R(C) = (y1y2
;0 − y2y1

;0)Wr, Wr = {a11a22 − (a12)2}/α3.

We shall denote the homogeneous polynomials in (yi) of degree r by
hp(r) for brevity. For example, γ0

i
0 is hp(2).

Then we have
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Lemma 2.1 ([11]). In a two-dimensional Finsler space with (α, β)-
metric L(α, β), the geodesics are given by the differential equation

(Lα + wαγ2)R(C) + β;ry
rδω − Lβ(b1;2 − b2;1) = 0,

where w is the intrinsic Weierstrass invariant, R(C) is defined by (2.4)
and δ = (a1rb2 − a2rb1)yr.

Suppose that the Riemannian metric α be positive-definite. Then we
may refer to an isothermal coordinate system (xi, yi) = (x, y, ẋ, ẏ) ([3])
such that

α = aE, a = a(x, y) > 0, E =
√

ẋ2 + ẏ2 =
√

1 + y′2.

Then R(C) is of the form Ri(C), where Ri(C) =
a

E3
(ẋÿ− ẏẍ)+

1
E

(axẏ−
ayẋ). Next γ2 = (b1ẏ− b2ẋ)2, and hence we may put γ = b1ẏ− b2ẋ ([3])
and δ = −a2γ. Therefore, we have

Lemma 2.2 ([11]). For the Finsler space of Lemma 2.1, if α is
positive-definite and we refer to an isothermal coordinate system (x, y)
such that α = aE, then the differential equation of a geodesic is of the
form:

(2.5)
{Lα + aEω(b1ẏ − b2ẋ)2}{a(ẋÿ − ẏẍ) + E2(axẏ − ayẋ)}

−E3Lβ(b1y − b2x)−E3a2ω(b1ẏ − b2ẋ)b0;0 = 0,

where

(2.6)
b0;0 = (b1xẋ + b1yẏ)ẋ + (b2xẋ + b2yẏ)ẏ

+
1
a
{(ẋ2 + ẏ2)(axb1 + ayb2)− 2(b1ẋ + b2ẏ)(axẋ + ayẏ)}

and we put bix = ∂bi/∂x, biy = ∂bi/∂y, ax = ∂a/∂x and ay = ∂a/∂y.

Let us consider the r-th series (α, β)-metric

(2.7) L(α, β) = β

r∑

k=0

(
α

β

)k

,

where we assume α < β.
Then the metric above is called an approximate infinite series (α, β)-

metric or the rth approximate infinite series (α, β)-metric.
If r = 1, then L = α + β is a Randers metric. The condition that

the Randers space be a Berwald space, and a Douglas space are found

in [12], respectively. If r = 2, then L = α+β +
α2

β
is treated in [8] as an
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(α, β)-metric that a locally Minkowski space is flat-parallel. If r = ∞,
then this metric (2.7) is expressed as the form

(2.8) L(α, β) =
β2

β − α
.

Then the metric above is called an infinite series (α, β)-metric.

3. Equation of geodesic of (α, β)-metric

In the present paper, we find the function Gi(x, y) appearing in the
equations of geodesic of a Finsler space with (α, β)-metric, that is, solve
Dj

i
k with (2.3). It is rewritten in the form

(3.1) Lβ(ri0 − si0) = `rD
r
i,

in the notation of (2.1), because we have `i = LαYi/α + Lβbi. Then we
have

(3.2) Lβr00 = 2`rD
r.

If we differentiate this by yi and paying attention to Lβααi + Lββbi =
Lββpi, where pi = bi − (β/α2)Yi, then we have

Lββpir00 + 2Lβri0 =
2hriD

r

L
+ 2`rD

r
i.

Since we have [2], that is,

hij =
(

LLα

α

)(
aij − YiYj

α2

)
+ LLββpipj ,

the substitution in the above yields

(3.3) Di =
( η

α2

)
yi +

(
αLββ

2Lα

)
(r00 − 2ξ)pi +

(
αLβ

Lα

)
si

0,

where η = YrD
r and ξ = prD

r and pi = airpr = bi − (β/α2)yi.
We shall find η and ξ. First (3.2) may be written as

(3.4) Lβr00 = 2
(

LαYr

α
+ Lβbr

)
Dr =

(
2Lα

α

)
η + 2LβbrD

r.

Next we have

ξ =
{

br −
(

β

α2

)
Yr

}
Dr = brD

r −
(

β

α2

)
η.
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Eliminating brD
r from these equations, we get

(3.5) η =
(

α2Lβ

2L

)
(r00 − 2ξ).

Further, multiplying by pi, (3.3) yields

ξ =
(

γ2Lββ

2αLα

)
(r00 − 2ξ) +

(
αLβ

Lα

)
s0.

On account of Lββ = (α/β)2Lαα, we have T of [5] in the form

(3.6) T =
(

L

α

)3 (
Lα +

γ2Lββ

α

)
, γ2 = b2α2 − β2.

Hence, the above yields

(3.7) ξ =
(

L3

α2T

){(
γ2Lαα

2β2

)
r00 + Lβs0

}
.

Consequently, (3.5) and (3.7) give η and ξ, and hence (3.3) can be rewrit-
ten in the form

(3.8) Di =
( η

α2

){
yi +

(
α3LLαα

β2LαLβ

)
pi

}
+

(
αLβ

Lα

)
si

0.

Therefore, for a Finsler space with (α, β)-metric, the functions Gi(x, y)
are of the form 2Gi = γ0

i
0 + 2Di, where γj

i
k are Christoffel symbols of

the associated Riemannian space and Di are given by (3.8) with (3.5)
and (3.7).

Thus Gi are obtained without use of the inverse fundamental tensor
gij , similarly to the case of dimension two [11].

We have, of course, the general equations of geodesic C of Fn in the
form

d2xi

ds2
+ 2Gi

(
x,

dx

ds

)
= 0,

where s is the arc-length of C in Fn.
For a Finsler space Fn = (M, L(α, β)), it may be convenient to write

the equations with the Riemannian paramenter σ : dσ2 = α2(x, dx).
Owing to [4], we have the equations in the form

(3.9)
d2xi

dσ2
+ 2Gi

(
x,

dx

dσ

)
= −

{
σ′′

(σ′)2

}
dxi

dσ
,

where σ′ = dσ/ds. We observe

σ′ =
1

L(x, x′)
,
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where we put x′ = dx/dσ. It follows that

σ′′ =
dσ′

ds
= −

{
1

L3(x, x′)

} {
Lα

(
dα

dσ

)
+ Lβ

(
dβ

dσ

)}
.

Since α(x, dx/dσ) = 1 along C, we have dα/dσ = 0, and

dβ

dσ
= r00 + brγ0

r
0 + G,

where G = bi

(
d2xi

dσ2

)
. Consequently,

σ′′

(σ′)2
= −

(
Lβ

L

)
(r00 + brγ0

r
0 + G),

where yi = dxi/dσ. Thus (3.9) may be written

(3.10)
d2xi

dσ2
+ γ0

i
0 + 2Di =

(
Lβ

L

)
(r00 + brγ0

r
0 + G)

(
dxi

dσ

)
.

To eliminate G, we multiply by bi and (3.10) gives

G + biγ0
i
0 + 2biD

i =
(

Lββ

L

)
(r00 + brγ0

r
0 + G).

Substituting from (3.10), the left-hand side can be written as

G + biγ0
i
0 + r00 =

(
2Lα

Lβ

)
η.

Hence, G + biγ0
i
0 + r00 = 2ηLα/Lβ. Therefore (3.10) is written in the

form

d2xi

dσ2
+ γj

i
k(x)

(
dxj

dσ

)(
dxk

dσ

)

+
(

2ηLLαα

β2LαLβ

)
pi +

(
2Lβ

Lα

)
si

j

(
dxj

dσ

)
= 0.

(3.11)

Therefore we have

Theorem 3.1. In a Finsler space Fn = (M, L(α, β)) with (α, β)-
metric, the differential equations of a geodesic C are written in terms of
the arc-length σ of C in the associated Riemannian space Rn = (M,α),
as (3.11), where yi = dxi/dσ.
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4. Geodesic equation of dimension n with an approximate
infinite series (α, β)-metric

In the present section, we consider the conditions that a Finsler space
Fn with an approximate infinite series (α, β)-metric be the differential
equations of a geodesic. The metric of Fn is (2.7). In this case we have

(4.1)

Lα =
r∑

k=0

k

(
α

β

)k−1

, Lβ = −
r∑

k=0

(k − 1)
(

α

β

)k

,

Lαα =
1
β

r∑

k=0

k(k − 1)
(

α

β

)k−2

, Lββ =
1
β

r∑

k=0

(k − 1)k
(

α

β

)k

.

Now we shall divide our consideration in two cases of which r is even
or odd.

(1) Case of r = 2h, where h is a positive integer.
When r = 2h, we have

r∑

k=0

(
α

β

)k

=
1

β2h

2h∑

k=0

αkβ2h−k,

r∑

k=0

k

(
α

β

)k−1

=
β

β2h

2h∑

k=0

kαk−1β2h−k,

r∑

k=0

(k − 1)
(

α

β

)k

=
1

β2h

2h∑

k=0

(k − 1)αkβ2h−k,(4.2)

r∑

k=0

k(k − 1)
(

α

β

)k−2

=
1

β2h−2

2h∑

k=0

(k − 1)kαk−2β2h−k,

r∑

k=0

(k − 1)k
(

α

β

)k

=
1

β2h

2h∑

k=0

(k − 1)kαkβ2h−k.

Separating the rational and irrational parts in yi with respect to (4.2),
we obtain

2h∑

k=0

αkβ2h−k = I + αJ,

2h∑

k=0

kαk−1β2h−k = M + αK,



Equations of geodesic with an approximate infinite series (α, β)-metric 191

2h∑

k=0

(k − 1)αkβ2h−k = L + α3N,(4.3)

2h∑

k=0

(k − 1)kαk−2β2h−k = P + αQ,

2h∑

k=0

(k − 1)kαkβ2h−k = R + αS,

where

I =
h∑

k=0

α2kβ2h−2k, J =
h−1∑

k=0

α2kβ2h−2k−1,

K =
h∑

k=1

2kα2k−2β2h−2k, L =
h∑

k=0

(2k − 1)α2kβ2h−2k,

M =
h−1∑

k=1

(2k + 1)α2kβ2h−2k−1, N =
h−1∑

k=1

2kα2k−2β2h−2k−1,

P =
h∑

k=0

(2k − 1)2kα2k−2β2h−2k, Q =
h−1∑

k=0

2k(2k + 1)α2k−2β2h−2k−1,

R =
h∑

k=0

(2k − 1)α2kβ2h−2k, S =
h−1∑

k=0

2k(2k + 1)α2kβ2h−2k−1.

Substituting (4.1), (4.2) and (4.3) into (3.6), we have

(4.4) T =
(I + αJ)3Ω

α4β8h−2
,

where Ω = αβ2(M + αK) + γ2(R + αS).
Substituting (4.1), (4.2) and (4.3) into (3.7), we get

(4.5) ξ = α2
{
γ2(P + αQ)r00 − 2β(L + α3N)s0

}
/2Ω.

Further substituting (4.1), (4.2) and (4.3) into (3.5), we obtain

(4.6)
η =− α2(L + α3N)

2β(I + αJ)Ω
[{αβ2(M + αK) + γ2(R + αS)

− α2γ2(P + αQ)}r00 + 2α2β(L + α3N)s0

]
.
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Furthermore substituting (4.1), (4.2), (4.3) and (4.6) into (3.8), we have

Di = − (L + α3N)
2β(I + αJ)Ω

[{αβ2(M + αK) + γ2(R + αS)

− α2γ2(P + αQ)}r00 + 2α2β(L + α3N)s0

]
(4.7)

{
yi − α3(I + αJ)(P + αQ)

β(M + αK)(L + α3N)
P i

}
− α(L + α3N)

β(M + αK)
si

0.

Therefore we have

Theorem 4.1. For a Finsler space with an approximate infinite
series (α, β)-metric, the functions Gi(x, y) are of the form 2Gi = γ0

i
0 +

2Di, where γj
i
k are Christoffel symbols of the associated Riemannian

space and Di are given by (4.7) with (4.5) and (4.6).

Next, paying attenting to G+ biγ0
i
0 + r00 = α2(M +αK)[{αβ2(M +

αK) + γ2(R + αS)−α2γ2(P + αQ)}r00 + 2α2β(L + α3N)s0]/(I + αJ)Ω
and substituting (4.1), (4.2) and (4.3) into (3.11), we get

d2xi

dσ2
+ γj

i
k(x)

(
dxj

dσ

)(
dxk

dσ

)
+

α2(P + αQ)
β2(M + αK)Ω[

{αβ2(M + αK) + γ2(R + αS)− α2γ2(P + αQ)}r00(4.8)

+ 2α2β(L + α3N)s0

]
pi − 2(L + α3N)

β(M + αK)
si

j

(
dxj

dσ

)
= 0.

Therefore we have

Theorem 4.2. In a Finsler space with an approximate infinite
series (α, β)-metric, the differential equations of a geodesic C are written
in terms of the arc-length σ of C in the associated Riemannian space
Rn = (M,α) as (4.8), where yi = dxi/dσ.

(2) Case of r = 2h + 1, where h is a positive integer.
When r = 2h + 1, we have

L =
1

β2h
(βI + αU), Lα =

1
β2h

(O + αβK),

Lβ = − 1
β2h+1

(βL + α3K), Lαα =
1

β2h
(βP + αW ),(4.9)

Lββ =
1

β2h+2
(βR + αT ),
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where

(4.10)

O =
h∑

k=0

(2k + 1)α2kβ2h−2k, T =
h∑

k=0

2k(2k + 1)α2kβ2h−2k,

U =
h∑

k=0

α2kβ2h−2k, W =
h∑

k=0

(2k + 1)2kα2k−2β2h−2k.

Substituting (4.9) and (4.10) into (3.6), we have

(4.11) T = (βI + αU)3Ω1/α4β8h+2,

where Ω1 = αβ2(O + αβK) + γ2(βR + αT ).
Substituting (4.9) and (4.10) into (3.7), we get

(4.12) ξ = α2{γ2(βP + αW )r00 − 2β(βL + α3K)s0}
/
2Ω1.

Further substituting (4.9) and (4.10) into (3.5), we obtain

(4.13)
η =− α2(βL + α3K)

[{Ω1 − α2γ2(βP + αW )}r00

+ 2α2β(βL + α3K)s0

]
/2β(βI + αU)Ω1.

Furthermore substituting (4.9) and (4.10) into (3.8), we have

Di =
[{Ω1 − α2γ2(βP + αW )}r00 + 2α2β(βL + α3K)s0

](4.14)

[{β(O + αβK)(βL + α3K)yi − α3(βI + αU)(βP + αW )pi
]

/
2β2(βI + αU)(O + αβK)Ω1 − α(βL + α3K)si

0

/
β(O + αβK).

Therefore we have

Theorem 4.3. For a Finsler space with an approximate infinite
series (α, β)-metric, the functions Gi(x, y) are of the form 2Gi = γ0

i
0 +

2Di, where γj
i
k are Christoffel symbols of the associated Riemannian

space and Di are given by (4.14) with (4.12) and (4.13).

Next, paying attenting to G + biγ0
i
0 + r00 = α2(O + αβK)[{Ω1 −

α2γ2(βP+αW )}r00+2α2β(βL+α3K)s0]
/
(βI+αW )Ω1 and substituting
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(4.9) and (4.10) into (3.11), we get
(4.15)
d2xi

dσ2
+ γj

i
k(x)

(
dxj

dσ

)(
dxk

dσ

)

+
α2(βP + αW )

[
{Ω1 − α2γ2(βP + αW )}r00 + 2α2β(βL + α3K)s0

]

β2(O + αβK)Ω1
pi

− 2(βL + α3K)
β(O + αβK)

si
j

(
dxj

dσ

)
= 0.

Therefore we have

Theorem 4.4. In a Finsler space with an approximate infinite
series (α, β)-metric, the differential equations of a geodesic C are written
in terms of the arc-length σ of C in the associated Riemannian space
Rn = (M,α) as (4.15), where yi = dxi/dσ.

5. Geodesic equation of dimension two

In the present section, by referring an isothermal coordinate sys-
tem, we find the differential equations of geodesics of a two-dimensional
Finsler space satisfying an approximate infinite series (α, β)-metric (2.7).

Now we shall divide our consideration in two cases of which r is even
or odd.

(1) Case of r = 2h, where h is a positive integer.
When r = 2h, we have

(5.1)
L =

I + αJ

β2h−1
, Lα =

M + αK

β2h−1
, Lβ = −L + α3N

β2h
,

Lαα =
P + αQ

β2h−1
, Lββ =

R + αS

β2h+1
.

Substituting (5.1) and w = (P +αQ)
/
β2h+1 into (2.5), we obtain the

differential equations of geodesics as follows:

(5.2)

{β2(M + αK) + aE(P + αQ)(b1ẏ − b2ẋ)2}{a(ẋÿ − ẏẍ)

+ E2(axẏ − ayẋ)}+ E{β(L + α3N)(b1y − b2x)

− a2(P + αQ)(b1ẏ − b2ẋ)b0;0} = 0,

where b0;0 is given by (2.6).
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If we take x of (x, y) as the parameter of curve C, that is, ẋ = 1,
ẏ = y′, ẍ = 0, ÿ = y′′ and we put E2 = 1 + (y′)2, then (5.2) is reduced
to

[{(b1 + b2y
′)2 + a2E2Q1(b1y

′ − b2)2}{a(y′′) + E2(axy′ − ay)}
+ {a3E6(b1 + b2y

′)N1(b1y − b2x)− a3E4Q1(b1y
′ − b2)b∗0;0}

]

+ E
[
a(b1 + b2y

′)2K1 + P1(b1y
′ − b2)2}{a(y′′) + E2(axy′ − ay)}(5.3)

+ {E2(b1 + b2y
′)L1(b1y − b2x)− a2E2P1(b1y

′ − b2)b∗0;0}
]

= 0,

where
b∗0;0 = (b1x + b1yy

′) + (b2x + b2yy
′)y′

+
1
a

{
(1 + (y′)2)(axb1 + ayb2)− 2(b1 + b2y

′)(ax + ayy
′)
}
,

K1 =
h∑

k=1

2ka2k−2E2k−2(b1 + b2y
′)2h−2k,

L1 =
h∑

k=0

(2k − 1)a2kE2k(b1 + b2y
′)2h−2k,

M1 =
h−1∑

k=0

(2k + 1)a2kE2k(b1 + b2y
′)2h−2k−1,

N1 =
h−1∑

k=1

2ka2k−2E2k−2(b1 + b2y
′)2h−2k−1,

P1 =
h∑

k=0

(2k − 1)2ka2k−2E2k−2(b1 + b2y
′)2h−2k,

Q1 =
h−1∑

k=1

2k(2k − 1)a2k−2E2k−2(b1 + b2y
′)2h−2k−1.

Since E is irrational in (y′), (5.3) is divided into two equations as follows:

(5.4)
{(b1 + b2y

′)2M1 + a2E2Q1(b1y
′ − b2)2}{a(y′′) + E2(axy′ − ay)}

+ {a3E6(b1 + b2y
′)N1(b1y − b2x)− a3E4Q1(b1y

′ − b2)b∗0;0} = 0,

(5.5)
a{(b1 + b2y

′)2K1 + P1(b1y
′ − b2)2}{a(y′′) + E2(axy′ − ay)}

+ {E2(b1 + b2y
′)L1(b1y − b2x)− a3E2P1(b1y

′ − b2)b∗0;0} = 0.



196 Il-Yong Lee

Furthermore, (5.4) and (5.5) are rewritten in the form

(5.6)

a(y′′) + {1 + (y′)2}(axy′ − ay)

= − a3{1 + (y′)2}2
[{1 + (y′)2}(b1b2y

′)N1(b1y − b2x)

−Q1(b1y
′ − b2)b∗0;0

]/[
(b1 + b2y

′)2M1

+ a2{1 + (y′)2}Q1(b1y
′ − b2)2

]
,

a(y′′) + {1 + (y′)2}(axy′ − ay)

= − {1 + (y′)2}{(b1 + b2y
′)L1(b1y − b2x)− a2P1(b1y

′ − b2)b∗0;0}(5.7) /
a{(b1 + b2y

′)2K1 + P1(b1y
′ − b2)2}.

Thus we have

Theorem 5.1. Let F 2 be a two-dimensional Finsler space with an
approximate infinite series (α, β)-metric (2.7), where α is assumed to be
positive definite. If we refer to an isothermal coordinate system (x, y)
such that α = aE and E =

√
1 + (y′)2 then the differential equations of

a geodesic y = y(x) of F 2 are given by (5.6) and (5.7).

Next, we deal with the case where the associated Riemannian space
is Euclidean one with an orthonormal coordinate system. Then a = 1,
ax = 0 and ay = 0. If we take b1 and b2 such that b1 = ∂b/∂x and
b2 = ∂b/∂y for a scalar b, then b1y − b2x = 0. Thus (5.6) and (5.7) are
reduced to

y′′ =
{1 + (y′)2}2Q2(b1y

′ − b2){(b1x + b1yy
′) + (b2x + b2yy

′)y′}
(b1 + b2y′)2M2 + {1 + (y′)2}Q2(b1y′ − b2)2

,(5.6′)

y′′ =
{1 + (y′)2}P2(b1y

′ − b2){(b1x + b1yy
′) + (b2x + b2yy

′)y′}
(b1 + b2y′)2K2 + P2(b1y′ − b2)2

,(5.7′)

where

K2 =
h∑

k=1

2k{1 + (y′)2}k−1(b1 + b2y
′),

M2 =
h−1∑

k=0

(2k + 1){1 + (y′)2}k(b1 + b2y
′)2h−2k−1,

P2 =
h∑

k=0

(2k − 1)2k{1 + (y′)2}k−1(b1 + b2y
′)2h−2k,
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Q2 =
h−1∑

k=0

(2k − 1)2k{1 + (y′)2}k−1(b1 + b2y
′)2h−2k−1,

W2 =
h∑

k=0

2k(2k + 1){1 + (y′)2}k−1(b1 + b2y
′)2h−2k.

Thus we have the following

Corollary 5.2. Let F 2 be a two-dimensional Finsler space with
an approximate infinite series (α, β)-metric (2.7), whose associated Rie-
mannian space R2 = (M2, α) is Euclidean such that a = 1 and ax =
ay = 0. If we refer to an orthonormal coordinate system (x, y) with
respect to α and b1y − b2x = 0, where b1 = ∂b/∂x, b2 = ∂b/∂y for a
scalar b, then the differential equations of geodesics y = y(x) of F 2 are
given by (5.6′) and (5.7′).

(2) Case of r = 2h + 1, where h is a positive integer.
Substituting (4.9) and w = (βP + αW )/β2h+2 into (2.5), we obtain

the differential equations of geodesics as follows:

(5.8)

{β2(O + αβK) + aE(βP + αW )(b1ẏ − b2ẋ)2}{a(ẋÿ − ẏẍ)

+ E2(axẏ − ayẋ)}+ E3β(βL + α3K)(b1y − b2x)

− E3a2(βP + αW )(b1ẏ − b2ẋ)b0;0 = 0,

where b0;0 is given by (2.6).
If we take x of (x, y) as the parameter of curve C, that is, ẋ = 1,

ẏ = y′, ẍ = 0, ÿ = y′′ and we put E2 = 1 + (y′)2, then (5.8) is reduced
to [

{(b1 + b2y
′)2O1 + a2E2(b1y

′ − b2)2W1}{ay′′ + E2(axy′ − ay)}

+ E4{a3E2(b1 + b2y
′)(b1y − b2x)K1 − a3(b1y

′ − b2)W1b
∗
0;0}

]

+ E
[
{a(b1 + b2y

′)3K1 + a(b1 + b2y
′)(b1y

′ − b2)2P1}{ay′′(5.9)

+ E2(axy′ − ay)}+ E2{(b1 + b2y
′)2(b1y − b2x)L1

− a2{(b1 + b2y
′)(b1y

′ − b2)P1b
∗
0;0}

]
= 0,

where

O1 =
h∑

k=0

(2k + 1)a2kE2k(b1 + b2y
′)2h−2k,
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W1 =
h∑

k=0

(2k)(2k + 1)a2k−2E2k−2(b1 + b2y
′)2h−2k.

Since E is irrational in (y′), (5.9) is divided into equations as follows:

(5.10)

{(b1 + b2y
′)2O1 + a2E2(b1y

′ − b2)2W1}{ay′′ + E2(axy′ − ay)}
+ E4{a3E2(b1 + b2y

′)(b1y − b2x)K1 − a3(b1y
′ − b2)W1b

∗
0;0}

= 0,

(5.11)

{a(b1 + b2y
′)3K1 + a(b1 + b2y

′)(b1y
′ − b2)2P1}{ay′′

+ E2(axy′ − ay)}+ E2{(b1 + b2y
′)2(b1y − b2x)L1

− a2(b1 + b2y
′)(b1y

′ − b2)P1b
∗
0;0} = 0.

Furthermore, (5.10) and (5.11) are rewritten in the form

(5.12)

ay′′ + {1 + (y′)2}(axy′ − ay)

= −
{
{1 + (y′)2}2

[
a3{1 + (y′)2}(b1 + b2y

′)(b1y − b2x)K1

− a3(b1y
′ − b2)W1b

∗
0;0

]}/{
(b1 + b2y

′)2O1 + a2{1 + (y′)2}

(b1y
′ − b2)2W1

}
,

(5.13)

ay′′ + {1 + (y′)2}(axy′ − ay)

= −
{
{1 + (y′)2}[(b1 + b2y

′)2(b1y − b2x)L1

− a2{(b1 + b2y
′)(b1y

′ − b2)P1b
∗
0;0}

]}/{
a(b1 + b2y

′)3K1

+ a(b1 + b2y
′)(b1y

′ − b2)2P1

}
.

Thus we have

Theorem 5.3. Let F 2 be a two-dimensional Finsler space with an
approximate infinite series (α, β)-metric (2.7), where α is assumed to be
positive definite. If we refer to an isothermal coordinate system (x, y)
such that α = aE and E =

√
1 + (y′)2, then the differential equations

of a geodesic y = y(x) of F 2 are given by (5.12) and (5.13).

Next, we deal with the case where the associated Riemannian space
is Euclidean one with an orthonormal coordinate system. Then a = 1,
ax = 0 and ay = 0. If we take b1 and b2 such that b1 = ∂b/∂x and
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b2 = ∂b/∂y for a scalar b, then b1y− b2x = 0. Thus (5.12) and (5.13) are
reduced to
(5.12′)

y′′ =
{1 + (y′)2}2(b1y

′ − b2)W2{(b1x + b1yy
′) + (b2x + b2yy

′)y′}
(b1 + b2y′)2O2 + {1 + (y′)2}(b1y′ − b2)W2

,

(5.13′)
y′′ =

{
{1 + (y′)2}(b1 + b2y

′)(b1y
′ − b2)P2{(b1x + b1yy

′)

+ (b2x + b2yy
′)y′}

}/{
(b1 + b2y

′)3K2 + (b1 + b2y
′)(b1y

′ − b2)2P2

}
,

where

K2 =
h∑

k=1

2k{1 + (y′)2}k−1(b1 + b2y
′)2h−2k,

P2 =
h∑

k=0

(2k − 1)2k{1 + (y′)2}k−1(b1 + b2y
′)2h−2k,

O2 =
h∑

k=0

(2k + 1){1 + (y′)2}k(b1 + b2y
′)2h−2k,

W2 =
h∑

k=0

2k(2k + 1){1 + (y′)2}k−1(b1 + b2y
′)2h−2k.

Thus we have the following

Corollary 5.4. Let F 2 be a two-dimensional Finsler space with
an approximate infinite series (α, β)-metric (2.7) whose associated Rie-
mannian space R2 = (M2, α) is Euclidean such that a = 1 and ax =
ay = 0. If we refer to an orthonormal coordinate system (x, y) with
respect to α and b1y − b2x = 0, where b1 = ∂b/∂x, b2 = ∂b/∂y for a
scalar b, then the differential equations of geodesics y = y(x) of F 2 are
given by (5.12′) and (5.13′).
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