JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 2, May 2012

EQUATIONS OF GEODESIC WITH AN APPROXIMATE INFINITE SERIES (α, β) -METRIC

IL-YONG LEE*

ABSTRACT. In the present paper, we consider the condition that is a geodesic equation on a Finsler space with an (α, β) -metric. Next we find the conditions that are equations of geodesic on the Finsler space with an approximate infinite series (α, β) -metric.

1. Introduction

A Finsler metric $L(\alpha, \beta)$ in a differentiable manifold M^n is called an (α, β) -metric, if L is a positively homogeneous function of degree one of a Riemannian metric $\alpha = (a_{ij}(x)y^iy^j)^{1/2}$ and a one-form $\beta = b_i(x)y^i$ on M^n .

The geodesics of a two-dimensional Finsler space $F^2 = (M^2, L)$ with an (α, β) -metric are regarded as the curves of the associated Riemannian space $R^2 = (M^2, \alpha)$ which are bent by the differential 1-form β (cf. [10]). M. Matsumoto and H. S. Park [11] have expressed the differential equations of geodesics in two-dimensional Finsler spaces with a Randers metric and a Kropina metric in the most clean form y'' = f(x, y, y'), respectively.

Let F^n be an *n*-dimensional Finsler space with the fundamental function L(x, y) and the fundamental tensor $g_{ij}(x, y) = \dot{\partial}_i \dot{\partial}_j L^2/2$. The tangent vector space F_x^n with the origin removed at every point x of F^n is a Minkowski space with the norm L(x, y). On the other hand, F_x^n is also regarded as a Riemannian space with the fundamental quadratic form $ds^2 = g_{ij}dy^i dy^j$ [14], as it is often emphasized in [6]. Therefore the concept of geodesic is introduced in the Riemannian space F_x^n by applying

Received August 23, 2011; Accepted November 18, 2011.

²⁰¹⁰ Mathematics Subject Classification: Primary 53B40.

Key words and phrases: (α, β) -metric, Berwald connection, equation of geodesic, Finsler space, approximate infinite series (α, β) -metric.

This paper was supported by Kyungsung University Research Grant in 2012.

to F_x^n the usual theory of calculus of variations, and a geodesic coincides with an autoparallel curve with respect to the Riemannian connection.

In the present paper, we consider the conditions that the Finsler space with an (α, β) -metric be geodesic. Next we find the conditions that the Finsler space with an approximate infinite series (α, β) -metric be equations of geodesic.

2. Priliminaries

We consider a Finsler space $F^n = (M, L)$ with an (α, β) -metric. Then α is a Riemannian metric and β is a 1-form in (y^i) as follows:

$$\alpha^2 = a_{ij}(x)y^iy^j$$
 and $\beta = b_i(x)y^i$.

The space $\mathbb{R}^n = (M, \alpha)$ is called the associated Riemannian space of \mathbb{R}^n . The regularity of α is supposed and we denote by (a^{ij}) the inverse of $(a_{ij}).$

Throughout the present paper, we use the following notation as follows:

For a function $L(\alpha, \beta)$ we put

$$L_{\alpha} = \frac{\partial L}{\partial \alpha}, \quad L_{\beta} = \frac{\partial L}{\partial \beta}, \quad L_{\alpha\beta} = \frac{\partial L_{\alpha}}{\partial \beta}, \quad \text{etc}$$

For instance, we have $L_{\alpha\alpha} + L_{\beta\beta} = L$ from the homogeneity of L.

The subscripts i, j, \dots , are used to denote $\dot{\partial}_i, \dot{\partial}_j$. For instance, $\alpha^2 = a_{rs}(x)y^ry^s$ yields

$$\alpha \alpha_i = a_{ir} y^r, \quad \alpha \alpha_{ij} + \alpha_i \alpha_j = a_{ij}, \quad \beta_i = b_i.$$

If we put $a_{ir}y^r = Y_i$ and $a^{ir}b_r = B^i$, then

$$\alpha \alpha_{ij} = a_{ij} - \frac{Y_i Y_j}{\alpha^2} = k_{ij}$$

are components of the angular metric tensor of \mathbb{R}^n .

Throughout the following we are concerned with the Levi-Civita connection $\gamma = (\gamma_j{}^i{}_k(x))$ of \mathbb{R}^n . On account of [1], we get

$$\gamma_j{}^i{}_k = \frac{1}{2}a^{ir}(\partial_k a_{jr} + \partial_j a_{kr} - \partial_r a_{jk}),$$

and denote by (,) the covariant differentiation with respect to γ .

From γ a pair connection $*\gamma = (\gamma_j{}^i{}_k, \gamma_0{}^i{}_j, 0)$ is induced in F^n . The *h*-covariant differentiation with respect to γ is also denote by (;).

Let us list the symbols in F^n for the later use:

(a) $r_{ij} = (b_{i,j} + b_{j,i})/2, \quad s_{ij} = (b_{i,j} - b_{j,i})/2,$

(2.1) (b)
$$r^{i}{}_{j} = a^{ir}r_{rj}, \quad s^{i}{}_{j} = a^{ir}s_{rj},$$

(c) $r_{i} = b_{r}r^{r}{}_{i} = B^{r}r_{ri}, \quad s_{i} = b_{r}s^{r}{}_{i} = B^{r}s_{ri}$

It is noted that $s_{ij} = (\partial_j b_i - \partial_i b_j)/2$ and $s_r B^r = 0$.

Let
$$B\Gamma = (G_j^{i}{}_k, G^{i}{}_j, 0)$$
 be the Berwald connection of F^n and put

(2.2)
$$2G^{i} = \gamma_{0}{}^{i}{}_{0} + 2D^{i}, \quad G^{i}{}_{j} = \gamma_{0}{}^{i}{}_{j} + D^{i}{}_{j}, \\ G^{i}{}_{j}{}_{k} = \gamma_{j}{}^{i}{}_{k} + D^{i}{}_{j}{}^{i}{}_{k},$$

where $D^{i}{}_{j} = \dot{\partial}_{j}D^{i}$ and $D_{j}{}^{i}{}_{k} = \dot{\partial}_{k}D^{i}{}_{j}$. Berwald connection $B\Gamma$ [6] is uniquely determined by the system of axioms given in [13]:

(1)	L-metrical,	(2)	$G_j{}^i{}_k - G_k{}^i{}_j = 0,$
(3)	$\dot{\partial}_k G^i{}_j - G_k{}^i{}_j = 0,$	(4)	$y^r G_r^{\ i}{}_j - G^i{}_j = 0.$

Among these axioms $(2)\sim(4)$ have been satisfied by the quantities given in the right-hand sides of (2.2). Thus we have to treat of (1) alone, which is written as

$$L_{;i} = \partial_i L - G^r{}_i \dot{\partial}_r L = L_{/i} - D^r{}_i L_r = 0.$$

Since we have

$$L_{,i} = L_{\alpha}\alpha_{i} + L_{\beta}\beta_{,i} = L_{\beta}b_{r,i}y^{r},$$

$$L_{r} = L_{\alpha}\alpha_{r} + L_{\beta}\beta_{r} = L_{\alpha}Y_{r}/\alpha + L_{\beta}b_{r},$$

 $L_{i} = 0$ is written in the form

(2.3)
$$(L_{\alpha}Y_r + \alpha L_{\beta}b_r)D^r{}_i = \alpha L_{\beta}b_{r,i}y^r.$$

Next, we shall consider the two-dimensional case. Let us denote by R(C) = 0 the differential equation of the Weierstrass form of a geodesic C of R^2 . R(C) is given by

$$R(C) = \alpha_{\alpha(\beta)} - \alpha_{\beta(\alpha)} + (y^1 \dot{y}^2 - y^2 \dot{y}^1) W_r,$$

where $\alpha_i = \partial \alpha / \partial x^i$ and $\alpha_{(i)} = \partial \alpha / \partial y^i$, $y^i = dx^i / dt$ and $\dot{y}^i = dy^i / dt$ and W_r is the Weierstrass invariant of R^2 (cf. [11]) By putting $y^i_{;0} = \dot{y}^i + \gamma_0{}^i_0$, R(C) can be written in the form

(2.4)
$$R(C) = (y^1 y_{;0}^2 - y^2 y_{;0}^1) W_r, \quad W_r = \{a_{11}a_{22} - (a_{12})^2\} / \alpha^3.$$

We shall denote the homogeneous polynomials in (y^i) of degree r by hp(r) for brevity. For example, $\gamma_0{}^i{}_0$ is hp(2).

Then we have

LEMMA 2.1 ([11]). In a two-dimensional Finsler space with (α, β) metric $L(\alpha, \beta)$, the geodesics are given by the differential equation

$$(L_{\alpha} + w\alpha\gamma^2)R(C) + \beta_{;r}y^r\delta\omega - L_{\beta}(b_{1;2} - b_{2;1}) = 0,$$

where w is the intrinsic Weierstrass invariant, R(C) is defined by (2.4) and $\delta = (a_{1r}b_2 - a_{2r}b_1)y^r$.

Suppose that the Riemannian metric α be positive-definite. Then we may refer to an isothermal coordinate system $(x^i, y^i) = (x, y, \dot{x}, \dot{y})$ ([3]) such that

$$\alpha = aE, \quad a = a(x, y) > 0, \quad E = \sqrt{\dot{x}^2 + \dot{y}^2} = \sqrt{1 + {y'}^2}.$$

Then R(C) is of the form $R_i(C)$, where $R_i(C) = \frac{a}{E^3}(\dot{x}\ddot{y}-\dot{y}\ddot{x}) + \frac{1}{E}(a_x\dot{y}-a_y\dot{x})$. Next $\gamma^2 = (b_1\dot{y}-b_2\dot{x})^2$, and hence we may put $\gamma = b_1\dot{y}-b_2\dot{x}$ ([3]) and $\delta = -a^2\gamma$. Therefore, we have

LEMMA 2.2 ([11]). For the Finsler space of Lemma 2.1, if α is positive-definite and we refer to an isothermal coordinate system (x, y) such that $\alpha = aE$, then the differential equation of a geodesic is of the form:

(2.5)
$$\{L_{\alpha} + aE\omega(b_{1}\dot{y} - b_{2}\dot{x})^{2}\}\{a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^{2}(a_{x}\dot{y} - a_{y}\dot{x})\} \\ -E^{3}L_{\beta}(b_{1y} - b_{2x}) - E^{3}a^{2}\omega(b_{1}\dot{y} - b_{2}\dot{x})b_{0;0} = 0,$$

where

(2.6)
$$b_{0;0} = (b_{1x}\dot{x} + b_{1y}\dot{y})\dot{x} + (b_{2x}\dot{x} + b_{2y}\dot{y})\dot{y} + \frac{1}{a}\{(\dot{x}^2 + \dot{y}^2)(a_xb_1 + a_yb_2) - 2(b_1\dot{x} + b_2\dot{y})(a_x\dot{x} + a_y\dot{y})\}$$

and we put $b_{ix} = \partial b_i / \partial x$, $b_{iy} = \partial b_i / \partial y$, $a_x = \partial a / \partial x$ and $a_y = \partial a / \partial y$.

Let us consider the *r*-th series (α, β) -metric

(2.7)
$$L(\alpha,\beta) = \beta \sum_{k=0}^{r} \left(\frac{\alpha}{\beta}\right)^{k},$$

where we assume $\alpha < \beta$.

Then the metric above is called an *approximate infinite series* (α, β) -*metric* or the *rth approximate infinite series* (α, β) -*metric*.

If r = 1, then $L = \alpha + \beta$ is a Randers metric. The condition that the Randers space be a Berwald space, and a Douglas space are found in [12], respectively. If r = 2, then $L = \alpha + \beta + \frac{\alpha^2}{\beta}$ is treated in [8] as an

 (α, β) -metric that a locally Minkowski space is flat-parallel. If $r = \infty$, then this metric (2.7) is expressed as the form

(2.8)
$$L(\alpha,\beta) = \frac{\beta^2}{\beta - \alpha}.$$

Then the metric above is called an *infinite series* (α, β) -metric.

3. Equation of geodesic of (α, β) -metric

In the present paper, we find the function $G^{i}(x, y)$ appearing in the equations of geodesic of a Finsler space with (α, β) -metric, that is, solve $D_{j}{}^{i}{}_{k}$ with (2.3). It is rewritten in the form

(3.1)
$$L_{\beta}(r_{i0} - s_{i0}) = \ell_r D^r_{i},$$

in the notation of (2.1), because we have $\ell_i = L_{\alpha} Y_i / \alpha + L_{\beta} b_i$. Then we have

$$(3.2) L_{\beta}r_{00} = 2\ell_r D^r$$

If we differentiate this by y^i and paying attention to $L_{\beta\alpha}\alpha_i + L_{\beta\beta}b_i = L_{\beta\beta}p_i$, where $p_i = b_i - (\beta/\alpha^2)Y_i$, then we have

$$L_{\beta\beta}p_{i}r_{00} + 2L_{\beta}r_{i0} = \frac{2h_{ri}D^{r}}{L} + 2\ell_{r}D^{r}_{i}.$$

Since we have [2], that is,

$$h_{ij} = \left(\frac{LL_{\alpha}}{\alpha}\right) \left(a_{ij} - \frac{Y_i Y_j}{\alpha^2}\right) + LL_{\beta\beta} p_i p_j,$$

the substitution in the above yields

(3.3)
$$D^{i} = \left(\frac{\eta}{\alpha^{2}}\right)y^{i} + \left(\frac{\alpha L_{\beta\beta}}{2L_{\alpha}}\right)(r_{00} - 2\xi)p^{i} + \left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right)s^{i}_{0},$$

where $\eta = Y_r D^r$ and $\xi = p_r D^r$ and $p^i = a^{ir} p_r = b^i - (\beta/\alpha^2) y^i$. We shall find η and ξ . First (3.2) may be written as

(3.4)
$$L_{\beta}r_{00} = 2\left(\frac{L_{\alpha}Y_r}{\alpha} + L_{\beta}b_r\right)D^r = \left(\frac{2L_{\alpha}}{\alpha}\right)\eta + 2L_{\beta}b_rD^r.$$

Next we have

$$\xi = \left\{ b_r - \left(\frac{\beta}{\alpha^2}\right) Y_r \right\} D^r = b_r D^r - \left(\frac{\beta}{\alpha^2}\right) \eta.$$

Eliminating $b_r D^r$ from these equations, we get

(3.5)
$$\eta = \left(\frac{\alpha^2 L_\beta}{2L}\right) (r_{00} - 2\xi).$$

Further, multiplying by p_i , (3.3) yields

$$\xi = \left(\frac{\gamma^2 L_{\beta\beta}}{2\alpha L_{\alpha}}\right) (r_{00} - 2\xi) + \left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right) s_0.$$

On account of $L_{\beta\beta} = (\alpha/\beta)^2 L_{\alpha\alpha}$, we have T of [5] in the form

(3.6)
$$T = \left(\frac{L}{\alpha}\right)^3 \left(L_\alpha + \frac{\gamma^2 L_{\beta\beta}}{\alpha}\right), \quad \gamma^2 = b^2 \alpha^2 - \beta^2.$$

Hence, the above yields

(3.7)
$$\xi = \left(\frac{L^3}{\alpha^2 T}\right) \left\{ \left(\frac{\gamma^2 L_{\alpha\alpha}}{2\beta^2}\right) r_{00} + L_{\beta} s_0 \right\}.$$

Consequently, (3.5) and (3.7) give η and ξ , and hence (3.3) can be rewritten in the form

(3.8)
$$D^{i} = \left(\frac{\eta}{\alpha^{2}}\right) \left\{ y^{i} + \left(\frac{\alpha^{3}LL_{\alpha\alpha}}{\beta^{2}L_{\alpha}L_{\beta}}\right) p^{i} \right\} + \left(\frac{\alpha L_{\beta}}{L_{\alpha}}\right) s^{i}_{0}.$$

Therefore, for a Finsler space with (α, β) -metric, the functions $G^i(x, y)$ are of the form $2G^i = \gamma_0{}^i{}_0 + 2D^i$, where $\gamma_j{}^i{}_k$ are Christoffel symbols of the associated Riemannian space and D^i are given by (3.8) with (3.5) and (3.7).

Thus G^i are obtained without use of the inverse fundamental tensor g^{ij} , similarly to the case of dimension two [11].

We have, of course, the general equations of geodesic C of F^n in the form

$$\frac{d^2x^i}{ds^2} + 2G^i\left(x,\frac{dx}{ds}\right) = 0,$$

where s is the arc-length of C in F^n .

For a Finsler space $F^n = (M, L(\alpha, \beta))$, it may be convenient to write the equations with the Riemannian parameter $\sigma : d\sigma^2 = \alpha^2(x, dx)$. Owing to [4], we have the equations in the form

(3.9)
$$\frac{d^2x^i}{d\sigma^2} + 2G^i\left(x, \frac{dx}{d\sigma}\right) = -\left\{\frac{\sigma''}{(\sigma')^2}\right\}\frac{dx^i}{d\sigma},$$

where $\sigma' = d\sigma/ds$. We observe

$$\sigma' = \frac{1}{L(x, x')},$$

where we put $x' = dx/d\sigma$. It follows that

$$\sigma'' = \frac{d\sigma'}{ds} = -\left\{\frac{1}{L^3(x,x')}\right\} \left\{L_\alpha\left(\frac{d\alpha}{d\sigma}\right) + L_\beta\left(\frac{d\beta}{d\sigma}\right)\right\}.$$

Since $\alpha(x, dx/d\sigma) = 1$ along C, we have $d\alpha/d\sigma = 0$, and

$$\frac{d\beta}{d\sigma} = r_{00} + b_r \gamma_0{}^r{}_0 + G_r$$

where $G = b_i \left(\frac{d^2 x^i}{d\sigma^2}\right)$. Consequently, $\frac{\sigma''}{(\sigma')^2} = -\left(\frac{L_\beta}{L}\right)(r_{00} + b_r \gamma_0{}^r{}_0 + G),$

where $y^i = dx^i/d\sigma$. Thus (3.9) may be written

(3.10)
$$\frac{d^2 x^i}{d\sigma^2} + \gamma_0{}^i{}_0 + 2D^i = \left(\frac{L_\beta}{L}\right) (r_{00} + b_r \gamma_0{}^r{}_0 + G) \left(\frac{dx^i}{d\sigma}\right).$$

To eliminate G, we multiply by b_i and (3.10) gives

$$G + b_i \gamma_0{}^i{}_0 + 2b_i D^i = \left(\frac{L_\beta \beta}{L}\right) (r_{00} + b_r \gamma_0{}^r{}_0 + G).$$

Substituting from (3.10), the left-hand side can be written as

$$G + b_i \gamma_0{}^i{}_0 + r_{00} = \left(\frac{2L_\alpha}{L_\beta}\right)\eta.$$

Hence, $G + b_i \gamma_0{}^i{}_0 + r_{00} = 2\eta L_{\alpha}/L_{\beta}$. Therefore (3.10) is written in the form

(3.11)
$$\frac{\frac{d^2 x^i}{d\sigma^2} + \gamma_j{}^i{}_k(x) \left(\frac{dx^j}{d\sigma}\right) \left(\frac{dx^k}{d\sigma}\right)}{+ \left(\frac{2\eta L L_{\alpha\alpha}}{\beta^2 L_{\alpha} L_{\beta}}\right) p^i + \left(\frac{2L_{\beta}}{L_{\alpha}}\right) s^i{}_j \left(\frac{dx^j}{d\sigma}\right) = 0.$$

Therefore we have

THEOREM 3.1. In a Finsler space $F^n = (M, L(\alpha, \beta))$ with (α, β) metric, the differential equations of a geodesic C are written in terms of the arc-length σ of C in the associated Riemannian space $R^n = (M, \alpha)$, as (3.11), where $y^i = dx^i/d\sigma$.

4. Geodesic equation of dimension n with an approximate infinite series (α, β) -metric

In the present section, we consider the conditions that a Finsler space F^n with an approximate infinite series (α, β) -metric be the differential equations of a geodesic. The metric of F^n is (2.7). In this case we have

(4.1)
$$L_{\alpha} = \sum_{k=0}^{r} k \left(\frac{\alpha}{\beta}\right)^{k-1}, \qquad L_{\beta} = -\sum_{k=0}^{r} (k-1) \left(\frac{\alpha}{\beta}\right)^{k}, \\ L_{\alpha\alpha} = \frac{1}{\beta} \sum_{k=0}^{r} k(k-1) \left(\frac{\alpha}{\beta}\right)^{k-2}, \quad L_{\beta\beta} = \frac{1}{\beta} \sum_{k=0}^{r} (k-1)k \left(\frac{\alpha}{\beta}\right)^{k}.$$

Now we shall divide our consideration in two cases of which r is even or odd.

(1) Case of r = 2h, where h is a positive integer. When r = 2h, we have

(4.2)

$$\sum_{k=0}^{r} \left(\frac{\alpha}{\beta}\right)^{k} = \frac{1}{\beta^{2h}} \sum_{k=0}^{2h} \alpha^{k} \beta^{2h-k},$$

$$\sum_{k=0}^{r} k \left(\frac{\alpha}{\beta}\right)^{k-1} = \frac{\beta}{\beta^{2h}} \sum_{k=0}^{2h} k \alpha^{k-1} \beta^{2h-k},$$

$$\sum_{k=0}^{r} (k-1) \left(\frac{\alpha}{\beta}\right)^{k} = \frac{1}{\beta^{2h}} \sum_{k=0}^{2h} (k-1) \alpha^{k} \beta^{2h-k},$$

$$\sum_{k=0}^{r} k(k-1) \left(\frac{\alpha}{\beta}\right)^{k-2} = \frac{1}{\beta^{2h-2}} \sum_{k=0}^{2h} (k-1) k \alpha^{k-2} \beta^{2h-k},$$

$$\sum_{k=0}^{r} (k-1) k \left(\frac{\alpha}{\beta}\right)^{k} = \frac{1}{\beta^{2h}} \sum_{k=0}^{2h} (k-1) k \alpha^{k} \beta^{2h-k}.$$

Separating the rational and irrational parts in y^i with respect to (4.2), we obtain

$$\sum_{k=0}^{2h} \alpha^k \beta^{2h-k} = I + \alpha J,$$
$$\sum_{k=0}^{2h} k \alpha^{k-1} \beta^{2h-k} = M + \alpha K,$$

(4.3)
$$\sum_{k=0}^{2h} (k-1)\alpha^{k}\beta^{2h-k} = L + \alpha^{3}N,$$
$$\sum_{k=0}^{2h} (k-1)k\alpha^{k-2}\beta^{2h-k} = P + \alpha Q,$$
$$\sum_{k=0}^{2h} (k-1)k\alpha^{k}\beta^{2h-k} = R + \alpha S,$$

where

$$\begin{split} I &= \sum_{k=0}^{h} \alpha^{2k} \beta^{2h-2k}, \qquad J = \sum_{k=0}^{h-1} \alpha^{2k} \beta^{2h-2k-1}, \\ K &= \sum_{k=1}^{h} 2k \alpha^{2k-2} \beta^{2h-2k}, \qquad L = \sum_{k=0}^{h} (2k-1) \alpha^{2k} \beta^{2h-2k}, \\ M &= \sum_{k=1}^{h-1} (2k+1) \alpha^{2k} \beta^{2h-2k-1}, \qquad N = \sum_{k=1}^{h-1} 2k \alpha^{2k-2} \beta^{2h-2k-1}, \\ P &= \sum_{k=0}^{h} (2k-1) 2k \alpha^{2k-2} \beta^{2h-2k}, \qquad Q = \sum_{k=0}^{h-1} 2k (2k+1) \alpha^{2k-2} \beta^{2h-2k-1}, \\ R &= \sum_{k=0}^{h} (2k-1) \alpha^{2k} \beta^{2h-2k}, \qquad S = \sum_{k=0}^{h-1} 2k (2k+1) \alpha^{2k} \beta^{2h-2k-1}. \end{split}$$

Substituting (4.1), (4.2) and (4.3) into (3.6), we have

(4.4)
$$T = \frac{(I + \alpha J)^3 \Omega}{\alpha^4 \beta^{8h-2}},$$

where $\Omega = \alpha \beta^2 (M + \alpha K) + \gamma^2 (R + \alpha S).$

Substituting (4.1), (4.2) and (4.3) into (3.7), we get

(4.5)
$$\xi = \alpha^2 \{ \gamma^2 (P + \alpha Q) r_{00} - 2\beta (L + \alpha^3 N) s_0 \} / 2\Omega.$$

Further substituting (4.1), (4.2) and (4.3) into (3.5), we obtain

(4.6)
$$\eta = -\frac{\alpha^2 (L + \alpha^3 N)}{2\beta (I + \alpha J)\Omega} \Big[\{\alpha \beta^2 (M + \alpha K) + \gamma^2 (R + \alpha S) - \alpha^2 \gamma^2 (P + \alpha Q) \} r_{00} + 2\alpha^2 \beta (L + \alpha^3 N) s_0 \Big].$$

Furthermore substituting (4.1), (4.2), (4.3) and (4.6) into (3.8), we have

$$D^{i} = -\frac{(L+\alpha^{3}N)}{2\beta(I+\alpha J)\Omega} \Big[\{\alpha\beta^{2}(M+\alpha K) + \gamma^{2}(R+\alpha S) - \alpha^{2}\gamma^{2}(P+\alpha Q)\}r_{00} + 2\alpha^{2}\beta(L+\alpha^{3}N)s_{0} \Big] \\ \Big\{ y^{i} - \frac{\alpha^{3}(I+\alpha J)(P+\alpha Q)}{\beta(M+\alpha K)(L+\alpha^{3}N)}P^{i} \Big\} - \frac{\alpha(L+\alpha^{3}N)}{\beta(M+\alpha K)}s^{i}_{0} \Big\}$$

Therefore we have

THEOREM 4.1. For a Finsler space with an approximate infinite series (α, β) -metric, the functions $G^i(x, y)$ are of the form $2G^i = \gamma_0{}^i{}_0 + 2D^i$, where $\gamma_j{}^i{}_k$ are Christoffel symbols of the associated Riemannian space and D^i are given by (4.7) with (4.5) and (4.6).

Next, paying attenting to $G + b_i \gamma_0{}^i{}_0 + r_{00} = \alpha^2 (M + \alpha K) [\{\alpha \beta^2 (M + \alpha K) + \gamma^2 (R + \alpha S) - \alpha^2 \gamma^2 (P + \alpha Q)\} r_{00} + 2\alpha^2 \beta (L + \alpha^3 N) s_0] / (I + \alpha J) \Omega$ and substituting (4.1), (4.2) and (4.3) into (3.11), we get

$$(4.8) \qquad \frac{d^2x^i}{d\sigma^2} + \gamma_j{}^i{}_k(x)\left(\frac{dx^j}{d\sigma}\right)\left(\frac{dx^k}{d\sigma}\right) + \frac{\alpha^2(P+\alpha Q)}{\beta^2(M+\alpha K)\Omega}$$
$$(4.8) \qquad \left[\{\alpha\beta^2(M+\alpha K) + \gamma^2(R+\alpha S) - \alpha^2\gamma^2(P+\alpha Q)\}r_{00} + 2\alpha^2\beta(L+\alpha^3 N)s_0\right]p^i - \frac{2(L+\alpha^3 N)}{\beta(M+\alpha K)}s^i{}_j\left(\frac{dx^j}{d\sigma}\right) = 0.$$

Therefore we have

THEOREM 4.2. In a Finsler space with an approximate infinite series (α, β) -metric, the differential equations of a geodesic C are written in terms of the arc-length σ of C in the associated Riemannian space $R^n = (M, \alpha)$ as (4.8), where $y^i = dx^i/d\sigma$.

(2) Case of r = 2h + 1, where h is a positive integer. When r = 2h + 1, we have

(4.9)
$$L = \frac{1}{\beta^{2h}} (\beta I + \alpha U), \qquad L_{\alpha} = \frac{1}{\beta^{2h}} (O + \alpha \beta K),$$
$$L_{\beta} = -\frac{1}{\beta^{2h+1}} (\beta L + \alpha^{3} K), \qquad L_{\alpha\alpha} = \frac{1}{\beta^{2h}} (\beta P + \alpha W),$$
$$L_{\beta\beta} = \frac{1}{\beta^{2h+2}} (\beta R + \alpha T),$$

where

(4.10)
$$O = \sum_{k=0}^{h} (2k+1)\alpha^{2k}\beta^{2h-2k}, \quad T = \sum_{k=0}^{h} 2k(2k+1)\alpha^{2k}\beta^{2h-2k},$$
$$U = \sum_{k=0}^{h} \alpha^{2k}\beta^{2h-2k}, \qquad W = \sum_{k=0}^{h} (2k+1)2k\alpha^{2k-2}\beta^{2h-2k}.$$

Substituting (4.9) and (4.10) into (3.6), we have

(4.11)
$$T = (\beta I + \alpha U)^3 \Omega_1 / \alpha^4 \beta^{8h+2}$$

where $\Omega_1 = \alpha \beta^2 (O + \alpha \beta K) + \gamma^2 (\beta R + \alpha T).$

Substituting (4.9) and (4.10) into (3.7), we get

(4.12)
$$\xi = \alpha^2 \{ \gamma^2 (\beta P + \alpha W) r_{00} - 2\beta (\beta L + \alpha^3 K) s_0 \} / 2\Omega_1.$$

Further substituting (4.9) and (4.10) into (3.5), we obtain

(4.13)
$$\eta = -\alpha^2 (\beta L + \alpha^3 K) [\{\Omega_1 - \alpha^2 \gamma^2 (\beta P + \alpha W)\} r_{00} + 2\alpha^2 \beta (\beta L + \alpha^3 K) s_0] / 2\beta (\beta I + \alpha U) \Omega_1.$$

Furthermore substituting (4.9) and (4.10) into (3.8), we have

$$(4.14)$$

$$D^{i} = \left[\{ \Omega_{1} - \alpha^{2} \gamma^{2} (\beta P + \alpha W) \} r_{00} + 2\alpha^{2} \beta (\beta L + \alpha^{3} K) s_{0} \right]$$

$$\left[\{ \beta (O + \alpha \beta K) (\beta L + \alpha^{3} K) y^{i} - \alpha^{3} (\beta I + \alpha U) (\beta P + \alpha W) p^{i} \right]$$

$$/2\beta^{2} (\beta I + \alpha U) (O + \alpha \beta K) \Omega_{1} - \alpha (\beta L + \alpha^{3} K) s^{i}_{0} / \beta (O + \alpha \beta K).$$

Therefore we have

THEOREM 4.3. For a Finsler space with an approximate infinite series (α, β) -metric, the functions $G^i(x, y)$ are of the form $2G^i = \gamma_0{}^i{}_0 + 2D^i$, where $\gamma_j{}^i{}_k$ are Christoffel symbols of the associated Riemannian space and D^i are given by (4.14) with (4.12) and (4.13).

Next, paying attenting to $G + b_i \gamma_0{}^i{}_0 + r_{00} = \alpha^2 (O + \alpha\beta K) [\{\Omega_1 - \alpha^2 \gamma^2 (\beta P + \alpha W)\} r_{00} + 2\alpha^2 \beta (\beta L + \alpha^3 K) s_0] / (\beta I + \alpha W) \Omega_1$ and substituting

$$\begin{array}{l} (4.9) \text{ and } (4.10) \text{ into } (3.11), \text{ we get} \\ (4.15) \\ \frac{d^2 x^i}{d\sigma^2} + \gamma_j{}^i{}_k(x) \left(\frac{dx^j}{d\sigma}\right) \left(\frac{dx^k}{d\sigma}\right) \\ + \frac{\alpha^2(\beta P + \alpha W) \left[\{\Omega_1 - \alpha^2 \gamma^2(\beta P + \alpha W)\}r_{00} + 2\alpha^2\beta(\beta L + \alpha^3 K)s_0\right]}{\beta^2(O + \alpha\beta K)\Omega_1} p^i \\ - \frac{2(\beta L + \alpha^3 K)}{\beta(O + \alpha\beta K)}s^i{}_j\left(\frac{dx^j}{d\sigma}\right) = 0. \end{array}$$

Therefore we have

THEOREM 4.4. In a Finsler space with an approximate infinite series (α, β) -metric, the differential equations of a geodesic C are written in terms of the arc-length σ of C in the associated Riemannian space $R^n = (M, \alpha)$ as (4.15), where $y^i = dx^i/d\sigma$.

5. Geodesic equation of dimension two

In the present section, by referring an isothermal coordinate system, we find the differential equations of geodesics of a two-dimensional Finsler space satisfying an approximate infinite series (α , β)-metric (2.7).

Now we shall divide our consideration in two cases of which r is even or odd.

(1) Case of r = 2h, where h is a positive integer. When r = 2h, we have

(5.1)
$$L = \frac{I + \alpha J}{\beta^{2h-1}}, \qquad L_{\alpha} = \frac{M + \alpha K}{\beta^{2h-1}}, \qquad L_{\beta} = -\frac{L + \alpha^{3}N}{\beta^{2h}},$$
$$L_{\alpha\alpha} = \frac{P + \alpha Q}{\beta^{2h-1}}, \qquad L_{\beta\beta} = \frac{R + \alpha S}{\beta^{2h+1}}.$$

Substituting (5.1) and $w = (P + \alpha Q) / \beta^{2h+1}$ into (2.5), we obtain the differential equations of geodesics as follows:

(5.2)
$$\{\beta^{2}(M + \alpha K) + aE(P + \alpha Q)(b_{1}\dot{y} - b_{2}\dot{x})^{2}\}\{a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^{2}(a_{x}\dot{y} - a_{y}\dot{x})\} + E\{\beta(L + \alpha^{3}N)(b_{1y} - b_{2x}) - a^{2}(P + \alpha Q)(b_{1}\dot{y} - b_{2}\dot{x})b_{0;0}\} = 0,$$

where $b_{0;0}$ is given by (2.6).

If we take x of (x, y) as the parameter of curve C, that is, $\dot{x} = 1$, $\dot{y} = y'$, $\ddot{x} = 0$, $\ddot{y} = y''$ and we put $E^2 = 1 + (y')^2$, then (5.2) is reduced to

$$\begin{bmatrix} \{(b_1 + b_2 y')^2 + a^2 E^2 Q_1 (b_1 y' - b_2)^2\} \{a(y'') + E^2 (a_x y' - a_y)\} \\ + \{a^3 E^6 (b_1 + b_2 y') N_1 (b_{1y} - b_{2x}) - a^3 E^4 Q_1 (b_1 y' - b_2) b_{0;0}^*\} \end{bmatrix}$$

$$+ E \begin{bmatrix} a(b_1 + b_2 y')^2 K_1 + P_1 (b_1 y' - b_2)^2\} \{a(y'') + E^2 (a_x y' - a_y)\} \\ + \{E^2 (b_1 + b_2 y') L_1 (b_{1y} - b_{2x}) - a^2 E^2 P_1 (b_1 y' - b_2) b_{0;0}^*\} \end{bmatrix}$$

$$= 0,$$

where

$$\begin{split} b_{0;0}^{*} &= (b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y' \\ &+ \frac{1}{a} \{ (1 + (y')^{2})(a_{x}b_{1} + a_{y}b_{2}) - 2(b_{1} + b_{2}y')(a_{x} + a_{y}y') \}, \\ K_{1} &= \sum_{k=1}^{h} 2ka^{2k-2}E^{2k-2}(b_{1} + b_{2}y')^{2h-2k}, \\ L_{1} &= \sum_{k=0}^{h} (2k-1)a^{2k}E^{2k}(b_{1} + b_{2}y')^{2h-2k}, \\ M_{1} &= \sum_{k=0}^{h-1} (2k+1)a^{2k}E^{2k}(b_{1} + b_{2}y')^{2h-2k-1}, \\ N_{1} &= \sum_{k=1}^{h-1} 2ka^{2k-2}E^{2k-2}(b_{1} + b_{2}y')^{2h-2k-1}, \\ P_{1} &= \sum_{k=0}^{h} (2k-1)2ka^{2k-2}E^{2k-2}(b_{1} + b_{2}y')^{2h-2k}, \\ Q_{1} &= \sum_{k=1}^{h-1} 2k(2k-1)a^{2k-2}E^{2k-2}(b_{1} + b_{2}y')^{2h-2k-1}. \end{split}$$

Since E is irrational in (y'), (5.3) is divided into two equations as follows:

(5.4)
$$\{ (b_1 + b_2 y')^2 M_1 + a^2 E^2 Q_1 (b_1 y' - b_2)^2 \} \{ a(y'') + E^2 (a_x y' - a_y) \}$$

$$+ \{ a^3 E^6 (b_1 + b_2 y') N_1 (b_{1y} - b_{2x}) - a^3 E^4 Q_1 (b_1 y' - b_2) b_{0;0}^* \} = 0,$$

(5.5)
$$a\{(b_1+b_2y')^2K_1+P_1(b_1y'-b_2)^2\}\{a(y'')+E^2(a_xy'-a_y)\} + \{E^2(b_1+b_2y')L_1(b_1y-b_2x)-a^3E^2P_1(b_1y'-b_2)b_{0,0}^*\}=0.$$

Furthermore, (5.4) and (5.5) are rewritten in the form

(5.6)
$$a(y'') + \{1 + (y')^{2}\}(a_{x}y' - a_{y}) \\ = -a^{3}\{1 + (y')^{2}\}^{2}[\{1 + (y')^{2}\}(b_{1}b_{2}y')N_{1}(b_{1y} - b_{2x}) \\ -Q_{1}(b_{1}y' - b_{2})b_{0;0}^{*}] / [(b_{1} + b_{2}y')^{2}M_{1} \\ +a^{2}\{1 + (y')^{2}\}Q_{1}(b_{1}y' - b_{2})^{2}],$$

$$(5.7) = -\{1 + (y')^2\}\{(b_1 + b_2y')L_1(b_{1y} - b_{2x}) - a^2P_1(b_1y' - b_2)b_{0;0}^*\} \\ /a\{(b_1 + b_2y')^2K_1 + P_1(b_1y' - b_2)^2\}.$$

Thus we have

THEOREM 5.1. Let F^2 be a two-dimensional Finsler space with an approximate infinite series (α, β) -metric (2.7), where α is assumed to be positive definite. If we refer to an isothermal coordinate system (x, y) such that $\alpha = aE$ and $E = \sqrt{1 + (y')^2}$ then the differential equations of a geodesic y = y(x) of F^2 are given by (5.6) and (5.7).

Next, we deal with the case where the associated Riemannian space is Euclidean one with an orthonormal coordinate system. Then a = 1, $a_x = 0$ and $a_y = 0$. If we take b_1 and b_2 such that $b_1 = \partial b/\partial x$ and $b_2 = \partial b/\partial y$ for a scalar b, then $b_{1y} - b_{2x} = 0$. Thus (5.6) and (5.7) are reduced to

$$(5.6') \quad y'' = \frac{\{1 + (y')^2\}^2 Q_2(b_1y' - b_2)\{(b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y'\}}{(b_1 + b_2y')^2 M_2 + \{1 + (y')^2\} Q_2(b_1y' - b_2)^2},$$

$$(5.7') \quad y'' = \frac{\{1 + (y')^2\} P_2(b_1y' - b_2)\{(b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y'\}}{(b_1 + b_2y')^2 K_2 + P_2(b_1y' - b_2)^2},$$

where

$$K_{2} = \sum_{k=1}^{h} 2k\{1 + (y')^{2}\}^{k-1}(b_{1} + b_{2}y'),$$

$$M_{2} = \sum_{k=0}^{h-1} (2k+1)\{1 + (y')^{2}\}^{k}(b_{1} + b_{2}y')^{2h-2k-1},$$

$$P_{2} = \sum_{k=0}^{h} (2k-1)2k\{1 + (y')^{2}\}^{k-1}(b_{1} + b_{2}y')^{2h-2k},$$

$$Q_2 = \sum_{k=0}^{h-1} (2k-1)2k\{1+(y')^2\}^{k-1}(b_1+b_2y')^{2h-2k-1},$$
$$W_2 = \sum_{k=0}^{h} 2k(2k+1)\{1+(y')^2\}^{k-1}(b_1+b_2y')^{2h-2k}.$$

Thus we have the following

COROLLARY 5.2. Let F^2 be a two-dimensional Finsler space with an approximate infinite series (α, β) -metric (2.7), whose associated Riemannian space $R^2 = (M^2, \alpha)$ is Euclidean such that a = 1 and $a_x = a_y = 0$. If we refer to an orthonormal coordinate system (x, y) with respect to α and $b_{1y} - b_{2x} = 0$, where $b_1 = \frac{\partial b}{\partial x}$, $b_2 = \frac{\partial b}{\partial y}$ for a scalar b, then the differential equations of geodesics y = y(x) of F^2 are given by (5.6') and (5.7').

(2) Case of r = 2h + 1, where h is a positive integer.

Substituting (4.9) and $w = (\beta P + \alpha W)/\beta^{2h+2}$ into (2.5), we obtain the differential equations of geodesics as follows:

(5.8)
$$\{\beta^{2}(O + \alpha\beta K) + aE(\beta P + \alpha W)(b_{1}\dot{y} - b_{2}\dot{x})^{2}\}\{a(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^{2}(a_{x}\dot{y} - a_{y}\dot{x})\} + E^{3}\beta(\beta L + \alpha^{3}K)(b_{1y} - b_{2x})$$

$$-E^{3}a^{2}(\beta P + \alpha W)(b_{1}\dot{y} - b_{2}\dot{x})b_{0;0} = 0,$$

where $b_{0:0}$ is given by (2.6).

If we take x of (x, y) as the parameter of curve C, that is, $\dot{x} = 1$, $\dot{y} = y'$, $\ddot{x} = 0$, $\ddot{y} = y''$ and we put $E^2 = 1 + (y')^2$, then (5.8) is reduced to

$$\left[\{ (b_1 + b_2 y')^2 O_1 + a^2 E^2 (b_1 y' - b_2)^2 W_1 \} \{ a y'' + E^2 (a_x y' - a_y) \} + E^4 \{ a^3 E^2 (b_1 + b_2 y') (b_{1y} - b_{2x}) K_1 - a^3 (b_1 y' - b_2) W_1 b_{0;0}^* \} \right] (5.9) + E \left[\{ a (b_1 + b_2 y')^3 K_1 + a (b_1 + b_2 y') (b_1 y' - b_2)^2 P_1 \} \{ a y'' + E^2 (a_x y' - a_y) \} + E^2 \{ (b_1 + b_2 y')^2 (b_{1y} - b_{2x}) L_1 - a^2 \{ (b_1 + b_2 y') (b_1 y' - b_2) P_1 b_{0;0}^* \} \right] = 0,$$

where

$$O_1 = \sum_{k=0}^{h} (2k+1)a^{2k}E^{2k}(b_1+b_2y')^{2h-2k},$$

$$W_1 = \sum_{k=0}^{n} (2k)(2k+1)a^{2k-2}E^{2k-2}(b_1+b_2y')^{2h-2k}.$$

Since E is irrational in (y'), (5.9) is divided into equations as follows:

$$\{(b_1 + b_2 y')^2 O_1 + a^2 E^2 (b_1 y' - b_2)^2 W_1\} \{ay'' + E^2 (a_x y' - a_y)\}$$

(5.10)
$$+ E^4 \{a^3 E^2 (b_1 + b_2 y') (b_{1y} - b_{2x}) K_1 - a^3 (b_1 y' - b_2) W_1 b_{0;0}^*\}$$

$$= 0,$$

(5.11)
$$\{a(b_1 + b_2y')^3K_1 + a(b_1 + b_2y')(b_1y' - b_2)^2P_1\}\{ay'' + E^2(a_xy' - a_y)\} + E^2\{(b_1 + b_2y')^2(b_{1y} - b_{2x})L_1 - a^2(b_1 + b_2y')(b_1y' - b_2)P_1b_{0;0}^*\} = 0.$$

Furthermore, (5.10) and (5.11) are rewritten in the form

$$(5.12) \begin{aligned} ay'' + \{1 + (y')^2\}(a_xy' - a_y) \\ &= -\left\{\{1 + (y')^2\}^2 \left[a^3\{1 + (y')^2\}(b_1 + b_2y')(b_{1y} - b_{2x})K_1 \\ &- a^3(b_1y' - b_2)W_1b_{0;0}^*\right]\right\} / \left\{(b_1 + b_2y')^2O_1 + a^2\{1 + (y')^2\} \\ &(b_1y' - b_2)^2W_1\right\}, \\ (b_1y' - b_2)^2W_1\Big\}, \\ ay'' + \{1 + (y')^2\}(a_xy' - a_y) \\ &= -\left\{\{1 + (y')^2\}[(b_1 + b_2y')^2(b_{1y} - b_{2x})L_1 \\ &- a^2\{(b_1 + b_2y')(b_1y' - b_2)P_1b_{0;0}^*\}\right]\right\} / \left\{a(b_1 + b_2y')^3K_1 \\ &+ a(b_1 + b_2y')(b_1y' - b_2)^2P_1\Big\}. \end{aligned}$$

Thus we have

THEOREM 5.3. Let F^2 be a two-dimensional Finsler space with an approximate infinite series (α, β) -metric (2.7), where α is assumed to be positive definite. If we refer to an isothermal coordinate system (x, y) such that $\alpha = aE$ and $E = \sqrt{1 + (y')^2}$, then the differential equations of a geodesic y = y(x) of F^2 are given by (5.12) and (5.13).

Next, we deal with the case where the associated Riemannian space is Euclidean one with an orthonormal coordinate system. Then a = 1, $a_x = 0$ and $a_y = 0$. If we take b_1 and b_2 such that $b_1 = \partial b / \partial x$ and

 $b_2 = \partial b/\partial y$ for a scalar b, then $b_{1y} - b_{2x} = 0$. Thus (5.12) and (5.13) are reduced to (5.12')

$$y'' = \frac{\{1 + (y')^2\}^2 (b_1 y' - b_2) W_2 \{(b_{1x} + b_{1y} y') + (b_{2x} + b_{2y} y') y'\}}{(b_1 + b_2 y')^2 O_2 + \{1 + (y')^2\} (b_1 y' - b_2) W_2},$$
(5.13')
$$y'' = \left\{\{1 + (y')^2\} (b_1 + b_2 y') (b_1 y' - b_2) P_2 \{(b_{1x} + b_{1y} y') + (b_{2x} + b_{2y} y') y'\}\right\} / \left\{(b_1 + b_2 y')^3 K_2 + (b_1 + b_2 y') (b_1 y' - b_2)^2 P_2\right\},$$

where

$$K_{2} = \sum_{k=1}^{h} 2k \{1 + (y')^{2}\}^{k-1} (b_{1} + b_{2}y')^{2h-2k},$$

$$P_{2} = \sum_{k=0}^{h} (2k-1)2k \{1 + (y')^{2}\}^{k-1} (b_{1} + b_{2}y')^{2h-2k},$$

$$O_{2} = \sum_{k=0}^{h} (2k+1)\{1 + (y')^{2}\}^{k} (b_{1} + b_{2}y')^{2h-2k},$$

$$W_{2} = \sum_{k=0}^{h} 2k (2k+1)\{1 + (y')^{2}\}^{k-1} (b_{1} + b_{2}y')^{2h-2k}.$$

Thus we have the following

COROLLARY 5.4. Let F^2 be a two-dimensional Finsler space with an approximate infinite series (α, β) -metric (2.7) whose associated Riemannian space $R^2 = (M^2, \alpha)$ is Euclidean such that a = 1 and $a_x = a_y = 0$. If we refer to an orthonormal coordinate system (x, y) with respect to α and $b_{1y} - b_{2x} = 0$, where $b_1 = \frac{\partial b}{\partial x}$, $b_2 = \frac{\partial b}{\partial y}$ for a scalar b, then the differential equations of geodesics y = y(x) of F^2 are given by (5.12') and (5.13').

References

- P. L. Antonelli, R. S. Ingraden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Dordrecht, 1993.
- [2] P. L. Antonelli, Handbook of Finsler Geometry, volume 1 and 2, Kluwer Acad. Publ., Dordrecht /Boston/London, 2004.
- [3] M. Hashiguchi, S. Hōjō and M. Matsumoto, On Landsberg spaces of two dimensions with (α, β)-metric. J. Korean Math. Soc. 10 (1973), 17–26.

- [4] S. Hōjō, On geodesics of certain Finsler metrics, Tensor N. S. 34 (1980), 211– 217.
- [5] M. Kitayama, M. Azuma and M. Matsumoto, On Finsler spaces with(α, β)metric. Regularity, geodesics and main scalars, J. Hokkaido Univ. Education, (Sect. IIA) 46 (1995), 1–10.
- [6] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, Japan, 1986.
- M. Matsumoto, The Berwald connection of a Finsler space with an (α, β)metric, Tensor, N. S. 50 (1991), 18–21.
- [8] M. Matsumoto, A special class of locally Minkowski spaces with (α, β)-metric and conformally flat Kropina spaces, Tensor, N. S. 50 (1991), 202–207.
- [9] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. on Math. Phys. **31** (1992), 43–83.
- [10] M. Matsumoto, Geodesics of two-dimensional Finselr spaces, Math. Comput. Modeling 20 (1994), 1–23.
- [11] M. Matsumoto and H. S. Park, Equations of geodesics in two-dimensional Finselr spaces with (α, β)-metric, Rev. Roum. Math. Pures Appl. 42 (1998), 787– 793; II, Tensor, N. S. 60 (1998), 89–93.
- [12] M. Matsumoto, Finsler spaces with (α, β) -metric of Douglas type, Tensor, N. S. **60** (1998), 123–134.
- [13] T. Okada, Minkowskian product of Finsler spaces and Berwald connection, J. Math. Kyoto Univ. 22 (1982), 323–332.
- [14] T. Sumitomo, On the reduction of Minkowski space, J. Fac. Hokkaido Univ. 14 (1958), 50–58.

Department of Mathematics Kyungsung University Busan 608-736, Republic of Korea *E-mail*: iylee@ks.ac.kr

^{*}