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EQUATIONS OF GEODESIC WITH AN APPROXIMATE
INFINITE SERIES (a,3)-METRIC

IL-YonNG LEg*

ABSTRACT. In the present paper, we consider the condition that is
a geodesic equation on a Finsler space with an (a, 3)-metric. Next
we find the conditions that are equations of geodesic on the Finsler
space with an approximate infinite series («, 3)-metric.

1. Introduction

A Finsler metric L(c, () in a differentiable manifold M™ is called an
(a, B)-metric, if L is a positively homogeneous function of degree one of
a Riemannian metric o = (a;;(z)y'y?)/? and a one-form 8 = b;(x)y’ on
M™.

The geodesics of a two-dimensional Finsler space F? = (M2, L) with
an (o, #)-metric are regarded as the curves of the associated Riemannian
space R? = (M?, a) which are bent by the differential 1-form 3 (cf.
[10]). M. Matsumoto and H. S. Park [11] have expressed the differential
equations of geodesics in two-dimensional Finsler spaces with a Randers
metric and a Kropina metric in the most clean form y" = f(x,y,y),
respectively.

Let F™ be an n-dimensional Finsler space with the fundamental func-
tion L(z,y) and the fundamental tensor g;;(z,y) = 8;0;L?/2. The tan-
gent vector space F)' with the origin removed at every point x of F" is a
Minkowski space with the norm L(x,y). On the other hand, F) is also
regarded as a Riemannian space with the fundamental quadratic form
ds® = g;jdy'dy’ [14], as it is often emphasized in [6]. Therefore the con-
cept of geodesic is introduced in the Riemannian space F)' by applying
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to F' the usual theory of calculus of variations, and a geodesic coincides
with an autoparallel curve with respect to the Riemannian connection.

In the present paper, we consider the conditions that the Finsler
space with an («, §)-metric be geodesic. Next we find the conditions
that the Finsler space with an approximate infinite series («, 3)-metric
be equations of geodesic.

2. Priliminaries

We consider a Finsler space I = (M, L) with an («, 8)-metric. Then
« is a Riemannian metric and § is a 1-form in (y°) as follows:

o? = a;;()y'y’ and B = bi(z)y".
The space R™ = (M, «) is called the associated Riemannian space of F™.
The regularity of « is supposed and we denote by (a*’) the inverse of
(ai).
Throughout the present paper, we use the following notation as fol-
lows:
For a function L(«, 3) we put

OL oL 0L,

%, L/@ = %, La,@ = %, etc.

For instance, we have Loo + Lgg = L from the homogeneity of L.

Lo =

The subscripts i, j, - - -, are used to denote 9;, OJ
For instance, o = a,s(z)y"y* yields
aog = aipy’, oo+ ooy = agg, B =b;.
If we put a;,y” = Y; and a'"b, = B, then
Y;Y;
OéOéij = aij — 7022J = k‘ij

are components of the angular metric tensor of R".

Throughout the following we are concerned with the Levi-Civita con-
nection v = (y;"x(x)) of R". On account of [1], we get
1 .
§a”(6kajr + 8jakr — &aajk),
and denote by (,) the covariant differentiation with respect to .

From « a pair connection *y = (v;°%,70";,0) is induced in F". The
h-covariant differentiation with respect to *v is also denote by (;).

Let us list the symbols in F'™ for the later use:

(a) rij = (bij +bji)/2, sij = (bij — bji)/2,

i
Vi k=
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A ir % ir
(2.1) (b) r'j=a"r., s'j=a"s.,
(C) T, = br’l”Ti = BTT’M‘, S; = brSri = BTSM‘.

It is noted that Sij = (8jbl - 8119])/2 and STBT =0.

Let BT = (G;', G';,0) be the Berwald connection of F™ and put
(2.2) 2GF = ’ino + 2Di, Gij = ’}/oi]’ + Dij,
Gi'k = 7"k + Dj'k,

where D; = 9;D' and D;% = 9, D';. Berwald connection BT [6] is
uniquely determined by the system of axioms given in [13]:

(1) L-metrical, (2) G;'r— Gy =0,

(3) WhG'; —Gi'j =0, 4) ¥'G'lj—GY=o.
Among these axioms (2)~(4) have been satisfied by the quantities given

in the right-hand sides of (2.2). Thus we have to treat of (1) alone,
which is written as

Li=0L—G"0,L=L;— DL, =0.
Since we have
L= Lao; + LgB; = Lgbr;y",
L, = Looy + LgBr = LY, /oo + Lgb,,
L.; = 0 is written in the form
(2.3) (LoYr + aLgby) D"y = aLgbyy".

Next, we shall consider the two-dimensional case. Let us denote by
R(C) = 0 the differential equation of the Weierstrass form of a geodesic
C of R?. R(C) is given by

R(C) = Qq(B) — AB(a) =+ (y1y2 - yQQl)Wra

where a; = 0a/Ox" and Qi) = a0y, y' = dxt/dt and 3* = dy'/dt and
W, is the Weierstrass invariant of R? (cf. [11]) By putting y*.0 = §*+70%0,
R(C) can be written in the form

(24)  R(C) = W'yh — v yo)Wr, W, ={anaz — (a12)*}/a’.

We shall denote the homogeneous polynomials in (y") of degree r by
hp(r) for brevity. For example, vo"o is hp(2).
Then we have
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LEMMA 2.1 ([11]). In a two-dimensional Finsler space with («, (3)-
metric L(a, 3), the geodesics are given by the differential equation

(Lo + way?)R(C) + B,y 0w — Lp(bi,2 — ba1) = 0,

where w is the intrinsic Weierstrass invariant, R(C') is defined by (2.4)
and 6 = (a1,.by — ag:b1)y".

Suppose that the Riemannian metric « be positiye—deﬁnite. Then we
may refer to an isothermal coordinate system (z',y") = (z,y,4,y) ([3])
such that

a=aB, a=a(z,y) >0, E=+i2+32=1+y2

1
Then R(C) is of the form R;(C), where R;(C) = %(my—yw) + E(%y_

ayi). Next v2 = (b1y — ba#)?, and hence we may put v = b1y — bad ([3])
and § = —a’y. Therefore, we have

LEMMA 2.2 ([11]). For the Finsler space of Lemma 2.1, if « is
positive-definite and we refer to an isothermal coordinate system (x,y)
such that o = aF, then the differential equation of a geodesic is of the
form:

{La + aBw (b1 — bait)*Ha(dij — yi&) + E*(azl) — ayd)}

2.5
(25) _E3Lﬁ(b1y — bag) — E3a2w(b1y - b2$)b0;0 =0,

where

bO;O = (blxx + blyy)x + (beﬂ? + bey)y
(2.6) L. 5 . . N .
+ g{(x + 97)(azb1 + ayba) — 2(b1% + bay)(az® + ayy)}
and we put by, = 0b;/0x, by = 0b; /0y, a, = Ja/0x and a, = da/0y.

Let us consider the r-th series («, 3)-metric

(2.7) L(a,f) = ﬁkz;o (g)k

where we assume o < 3.

Then the metric above is called an approzimate infinite series (c, 3)-
metric or the rth approximate infinite series («, 3)-metric.

If r =1, then L = o 4+ (8 is a Randers metric. The condition that
the Randers space be a Berwald space, and a Douglas space are found

in [12], respectively. If r = 2, then L = a+ [+ % is treated in [8] as an
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(a, B)-metric that a locally Minkowski space is flat-parallel. If r = oo,

then this metric (2.7) is expressed as the form
52
B—a

(2.8) L(a, B) =

Then the metric above is called an infinite series («, 3)-metric.

3. Equation of geodesic of (a, §)-metric

In the present paper, we find the function G*(z,y) appearing in the
equations of geodesic of a Finsler space with (a, 3)-metric, that is, solve

D) with (2.3). It is rewritten in the form

(3.1) Lg(’l”io — SZ'(]) = &«Dri,

in the notation of (2.1), because we have ¢; = L,Y;/o + Lgb;. Then we
have

(3.2) Lﬁ?’o() = 2£TDT.

If we differentiate this by y* and paying attention to Lgqoi + Lggb; =

Lggpi, where p; = b; — (8/a?)Y;, then we have

2h,; D"
N 4+ 92¢,.D";.

Lggpiroo + 2Lgrio =

Since we have [2], that is,

LL Y;Y;

the substitution in the above yields

i Y i alss i alg ;
. D' = (—) -9 —_p
(3.3) o2 y+<2La>(roo §)p+(La s'o,
where n = Y, D" and ¢ = p,D" and p' = a"p, = b' — (3/a?)y’.
We shall find n and £. First (3.2) may be written as

LY, 9L
(3.4) Laroo =2 < C; + LﬁbT> D= ((;‘) 0+ 2Lgb, D"

Next we have

(@)} ()
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Eliminating b, D" from these equations, we get

(3.5) 0= <0‘2L5 > (ro0 — 2€).

2L
Further, multiplying by p;, (3.3) yields

2
v“Lgg alg
- ) .
§ <2aLa>(TOO §)+<La 50
On account of Lgz = (a/3)?Laa, we have T of [5] in the form

L\? 27,
(3.6) T:<a> <La+7aﬁﬁ>, et g,

Hence, the above yields

L3 2Loza
0 () (o)

Consequently, (3.5) and (3.7) give  and &, and hence (3.3) can be rewrit-
ten in the form

: , 3LLoo\ . L :
6s) D= (%) {y ; (ggLaLﬁ) pz} ; (Lﬂ>

Therefore, for a Finsler space with (o, 3)-metric, the functions G*(x, y)
are of the form 2G' = o'y + 2D", where v;’j, are Christoffel symbols of
the associated Riemannian space and D! are given by (3.8) with (3.5)
and (3.7).

Thus G* are obtained without use of the inverse fundamental tensor
g“, similarly to the case of dimension two [11].

We have, of course, the general equations of geodesic C' of F'™ in the

form )
d=x* ; dx
yE +2G° (x, ds> =0,
where s is the arc-length of C' in F™.
For a Finsler space F™ = (M, L(«, 3)), it may be convenient to write
the equations with the Riemannian paramenter o : do? = o?(z,dz).
Owing to [4], we have the equations in the form

d*z - dx o’ \ dat
3.9 — 4+ 2G" 2y =\
(39) oz " <x’ d0> {(U’)2} do’
where ¢’ = do/ds. We observe
, 1
g =
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where we put ' = dz/do. Tt follows that

==} () ()

Since a(z,dx/do) = 1 along C, we have da/do = 0, and

d
96 _ oo + b0 0 + G,

do
d2 %
where G = b; (di) Consequently,
o
o L
()2 - (Lﬂ> (o0 + br0"0 + G),

where y* = dz’/do. Thus (3.9) may be written
2,

do?

i i _ (Ls r da’
(3.10) +7'0+2D" = (L) (ro0 + br0"0 + G) <d0> :

To eliminate G, we multiply by b; and (3.10) gives
. 4 I
G +biv'o +2b;D" = <§ﬂ> (00 + bry0"0 + G).

Substituting from (3.10), the left-hand side can be written as

, 2L,
G+ bivo'o + 100 = (L) 7
&)
Hence, G + bivo'o + r00 = 2nLy/Lg. Therefore (3.10) is written in the
form
d*x’ +oyie(2) dal\ (da*
do? Ik do do
(3.11)

+ 2nLLaa i_|_ % i @ =0
#LoLs) " L, )7 \ae ) =

Therefore we have

THEOREM 3.1. In a Finsler space F" = (M, L(«, 3)) with («, 3)-
metric, the differential equations of a geodesic C' are written in terms of
the arc-length o of C' in the associated Riemannian space R" = (M, «a),
as (3.11), where y* = dx'/do.
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4. Geodesic equation of dimension n with an approximate
infinite series («, #)-metric

In the present section, we consider the conditions that a Finsler space
F™ with an approximate infinite series (o, 3)-metric be the differential
equations of a geodesic. The metric of F™ is (2.7). In this case we have

nepe() - wepen(s)

k=0
Laaziik(k—n (O‘)“ Lgs = lzr:(k—m; <a>k
/6k:0 ’3 ’ ﬂk:() 5

Now we shall divide our consideration in two cases of which r is even
or odd.

(1) Case of r = 2h, where h is a positive integer.
When r = 2h, we have

~(a\" 12hkz2hk
>2(5) =gt

(4.1)

k=0
y o\ BN ket
Yu(5) gt
k=0 k=0
r Q\E 2
@ S (S) = S e
k=0 b b k=0
r o\ k2 ;2
k(k—1) (ﬁ) = 2 Z(k —1)kak232hk,
k=0 k=0

(k — 1)k (O‘)k - i(k — 1)kak g2k
B ph e~ '

Separating the rational and irrational parts in y* with respect to (4.2),
we obtain

k=0

2h
Zakﬂzh_k =1+ al,
k=0

2h
D kot R = M+ oK,
k=0
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2h
(4.3) S (k- 1)k sk = L+ o®N,
k=0
2h
> (k= Dkt F = P+ 0Q),
k=0
2h
Sk Dtk = R 4 as,
k=0
where
h h—1
I= Z o2k g2h—2k. J= Z o2k g2h—2k—1
k=0 k=0
h h
K — k 2k—2 n2h—2k L _ k - 2k ~2h—2k
=2 ke =D _(2k — 1) g2,
k=1 k=0
h—1 h—1
= 2k g2h—2k—1 _ 2k—2 n2h—2k—1
M= Y2k + 1)a? g1 N = 3 gpa2gh2hel,
k=1 k=1
h h—1
P = Z(gk, —1)2ka?k2p22% () = Z 2e(2k + 1)a2k—2g2h—2k—1
k=0 k=0
h h—1
R=Y(2k—1)a® a2 8= "2k(2k + 1)a? 21,
k=0 k=0

Substituting (4.1), (4.2) and (4.3) into (3.6), we have

I+ aJ)3Q

(4.4) T = Wu

where Q = a3?(M + aK) +v*(R + o).

Substituting (4.1), (4.2) and (4.3) into (3.7), we get
(4.5) ¢ = a’{y*(P + aQ)roo — 2B(L + o*N)so } /290
Further substituting (4.1), (4.2) and (4.3) into (3.5), we obtain

__a*(L+a’N)
@e) T 28(T+an)Q
o’y (P + aQ)}roo + 20°B(L + o’ N)so) .

[{aB*(M + aK) +7*(R+ aS)
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Furthermore substituting (4.1), (4.2), (4.3) and (4.6) into (3.8), we have
L+ a®N)
261 + aJ)2
(4.7) — a2 (P + aQ)}roo + 202 8(L + a3N)30]
{ i B3I+ aJ)(P+ aQ) P’} oL +a3N)si0.
B(M + aK)(L+ a3N) B(M + oK)

D' = [{aB?(M + aK) +v*(R + aS)

Therefore we have

THEOREM 4.1. For a Finsler space with an approximate infinite
series (o, 3)-metric, the functions G*(z,y) are of the form 2G* = ~o'o +
2D', where ~;') are Christoffel symbols of the associated Riemannian
space and D* are given by (4.7) with (4.5) and (4.6).

Next, paying attenting to G + bjvo'o + 700 = o?(M + aK)[{aB?(M +
aK)+72(R+aS) — a®*y4(P+aQ)}roo + 22 B(L + a3 N)so) /(I + ] )
and substituting (4.1), (4.2) and (4.3) into (3.11), we get

d*z’ i da? da® a?(P + aQ)
oz Tik@) <da> <da> T RO TR0

(4.8) {af*(M + oK) +7*(R + aS) — a®7*(P + aQ)}roo
i 2L+a3N) ; (da?\
+20°B(L + 043N)so}p — Ws j (da) = 0.

Therefore we have

THEOREM 4.2. In a Finsler space with an approximate infinite
series (a, 3)-metric, the differential equations of a geodesic C are written
in terms of the arc-length o of C' in the associated Riemannian space

R" = (M, ) as (4.8), where y' = da'/do.

(2) Case of r = 2h + 1, where h is a positive integer.
When r = 2h 4+ 1, we have

Lzﬁéh([ﬂ%—aU), La:ﬁih(O—i-aﬂK),
1 1
(49) L,B = _W(/BL + a3K)7 Loo = W(ﬁp + CkW),

1
Lgp = EE] (BR + aT),
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where
h h
0= Z (2k + 1) o2k g2h=2k o _ Z2k(2k n 1)a2kﬂ2h—2k’
(4.10) e =
Z o2k 32h=2k. W= Z(% n 1)2ka2k—2ﬁ2h—2k'

k=

o

=0
Substituting (4.9) and (4.10) into (3.6), we have
(4.11) T = (BI + aU)3Q /ot 3802,

where 0 = a3%(0 + aBK) +v*(BR + aT).
Substituting (4.9) and (4.10) into (3.7), we get

(4.12) ¢ = ?{Y*(BP + aW)roy — 28(BL + o*K)so} /2.
Further substituting (4.9) and (4.10) into (3.5), we obtain

n=—a*(BL+ ’K)[{Q — a*y*(BP + aW)}roo

(4.13) ; ;
+20°B(BL + o’ K)so| /2B(BI + aU ).

Furthermore substituting (4.9) and (4.10) into (3.8), we have

(4.14)
= [{Ql — a?y3(BP + aW)}rgo + 2a%B(BL + ong)so]
[{B(O + aBK)(BL + o*K)y' — o*(BI + aU)(BP + aW)p']
/2B%(BI + aU)(0 + afK)Q1 — a(BL + o*K)s'y /B(0 + afK).

Therefore we have

THEOREM 4.3. For a Finsler space with an approximate inﬁnite
series (a, ﬁ)—metmc the functions G'(x,y) are of the form 2G* = o'y +
2D", where fy] r are Christoffel symbols of the associated Riemannian
space and D' are given by (4.14) with (4.12) and (4.13).

Next, paying attenting to G + bivo'o + ro0 = 2(0 + aBK)[{Q —
Y2 (BP+aW)}roo+202B(BL+0 K)s] /(BI+aW)Q; and substituting
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(4.9) and (4.10) into (3.11), we get
(4.15)

A2zt i dxd dzk

o2 T k() (da) (da)

a2(BP + aW) [{Ql — a22(BP + aW)}roo + 2023(BL + oK) so
B0 4 oK)

+ pi

2(L + o’K) ; (da?
" B0+ apE)Y (da)

Therefore we have

THEOREM 4.4. In a Finsler space with an approximate infinite
series (a, 3)-metric, the differential equations of a geodesic C are written
in terms of the arc-length o of C' in the associated Riemannian space
R" = (M, ) as (4.15), where y* = dz'/do.

5. Geodesic equation of dimension two

In the present section, by referring an isothermal coordinate sys-
tem, we find the differential equations of geodesics of a two-dimensional
Finsler space satisfying an approximate infinite series (a, 3)-metric (2.7).

Now we shall divide our consideration in two cases of which r is even
or odd.

(1) Case of r = 2h, where h is a positive integer.

When r = 2h, we have

I+aJ M+ oK L+a*N

Sy e Le= e b=t
(5-1) _ P+aQ _ R+aS
Loa = 32h—1 Lgp = B2ht1

Substituting (5.1) and w = (P +aQ)/#?"*! into (2.5), we obtain the
differential equations of geodesics as follows:

{B*(M + aK) 4+ aE(P + aQ)(byy — boi)?Ha(zij — yi)
(5.2) + F*(a,y — ayd)} + E{B(L + a*N)(b1y — baz)
— a*(P + aQ)(b1y — bad)boo} = 0,

where bg.o is given by (2.6).
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If we take = of (x,y) as the parameter of curve C, that is, & = 1,
y=1vy,i=0,9=1vy" and we put E? =1+ (y)2, then (5.2) is reduced
to

[{(b1 + b2y/)* + a®E*Q1(bry — b2)*Ha(y") + E*(azy’ — ay)}

+ {aE®(by + by ) N1(b1y — baz) — a® E*Q1(b1y’ — ba)bj0}]
(5.3)  + Ela(bi + bay' )’ K1 + Pi(biy’ — b2)*Ha(y") + E*(azy’ — ay)}

+ {B2(b1 + bay') L1 (bry — bay) — a>E*Pi(bry’ — b2)b0}]

—0,

where
bao = (b1z + blyy/) + (b2z + b2yy/)y,

F {1 () asbr + ayba) = 2bn + by’ + agy))),

h

Kl — Z 2ka2k—2E2k—2(bl + be/)2h_2k,
k=1
h

Ly =) (2k — 1)a”*E* (by + byy)*"?*,
k=0
h—1

M = Z(2k + 1)a2kE2k(b1 + bgy,)2h_2k_1,
k=0
h—1

Ny = Z Qk,an—ZEQk—Q(bl + b2y/)2h_2k_1,
k=1

h

Pl — Z(Qk _ 1)2ka2k—2E2k—2(b1 + b2y/)2h_2k,

k=0

h—1
Ql — Z 2]{3(2]{3 . 1)a2k72E2k72(b1 + b2y1)2h72k71'
k=1

Since F is irrational in (y'), (5.3) is divided into two equations as follows:

5.0 {(b1 + bay/)* My + > E*Q1(b1y — b2)*Ha(y") + E*(azy) — ay)}
' + {a®E° (b1 + bay') N1(b1y — baz) — a®E*Q1(b1y — b2)bo} = 0,

(5.5) a{(b1 + boy/)? K1 + Pi(b1y’ — b2)*Ha(y") + E*(azy’ — ay)}
' + {E?(by + boy') L1 (bry — bay) — > E2Py(bry’ — ba)biso} = 0.



196 Il-Yong Lee

Furthermore, (5.4) and (5.5) are rewritten in the form
a(y") + {1+ @) Haet/ — ay)

= —a* {1+ )P [{1+ ()} (brbay )N1(bry — baa)
— Qulbry — b2)biso) / [(br + bay/)* My
+a* {1+ (y)*}Q1(bry — 52)2]7

(5.6)

a(y") + {1+ ()’ Hazy' — ay)
(5.7) = — {1+ (") H(b1 + bay) L1 (bry — o) — a® Pr(bry’ — ba)bi}
/a{(bl + by’ )2 K1 + Pr(bry — b2)°}.
Thus we have

THEOREM 5.1. Let F? be a two-dimensional Finsler space with an
approximate infinite series («, 3)-metric (2.7), where « is assumed to be
positive definite. If we refer to an isothermal coordinate system (z,y)

such that « = aF and E = \/1 + (y')? then the differential equations of
a geodesic y = y(z) of F? are given by (5.6) and (5.7).

Next, we deal with the case where the associated Riemannian space
is Euclidean one with an orthonormal coordinate system. Then a = 1,
a; = 0 and a;, = 0. If we take by and by such that b; = 0b/0x and
by = 0b/0y for a scalar b, then b1y — by, = 0. Thus (5.6) and (5.7) are
reduced to

(5.6) 3 = {1+ 1)} Q2(b1y’ — b2){(b1a + bryy') + (bax + bayy)y'}
' (b1 + bay)2 Mz + {1+ (y/)2}Q2(b1y’ — ba)? ’

v _ AL+ )2 Po(b1y’ — ba){(bra + biyy') + (baw + boyy')y'}
(bl + bgy/)2K2 + Pg(bly’ — b2)2 ’

(5.7) y

where

h
Ky = 2k{1+ (/)21 (b1 + bay)),
k=1

h—1
Mz = (2k + D{1+ ()Y (br + by )2,
k=0
h
Py =) (2k = 12k{1+ (¢)*}*7 1 (br + bay)* 7,
k=0
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h—1
Q2 =D (2k — 1)2k{1+ (¢ )} (by + bay)" 2,
k=0
h
Wo = 3 2k(2k + {1+ ()2} (b1 + bay/) 2"
k=0

Thus we have the following

COROLLARY 5.2. Let F? be a two-dimensional Finsler space with
an approximate infinite series (v, 3)-metric (2.7), whose associated Rie-
mannian space R?> = (M?,«) is Euclidean such that a = 1 and a, =
ay = 0. If we refer to an orthonormal coordinate system (x,y) with
respect to a and biy — ba, = 0, where by = 0b/0x, by = 0b/0y for a
scalar b, then the differential equations of geodesics y = y(z) of F? are
given by (5.6') and (5.7').

(2) Case of r = 2h + 1, where h is a positive integer.
Substituting (4.9) and w = (8P + aW) /%2 into (2.5), we obtain
the differential equations of geodesics as follows:

{0 + aBK) + aB(BP + aW) (by — byt)*Ha(@jj — §i)
(5.8) + E*(ayy — ayd)} + E3B(BL + @*K) (byy — bay)
— E3a®(BP + aW)(b13 — bad)bo,0 = 0,
where bg.g is given by (2.6).
If we take = of (x,y) as the parameter of curve C, that is, & = 1,

y=1y,i=0,9=1vy" and we put E? =1+ (y')2, then (5.8) is reduced
to

[{(bl + b2y )01 + a’E* (b1 — b))’ Wi{ay" + E*(axy/ — ay)}

+ EHa® E* (b1 + bay') (bry — boo) K1 — @ (biy — 52)W153;0}}
(5.9) + E[{a(bl + by )P K1 + a(by + bay') (bry — b2)*Pr}{ay”

+ E*(asy’ — ay)} + E*{(b1 + bay')* (biy — b2e) Ln

— a®{(b1 + bay/) (bry — bz)Ple‘i;o}} =0,

where
h
O1 =Y (2k+ 1)a** E®(by + boy')*" 2",
k=0
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h
Wi = (2k)(2k + 1)a® 2 B2 (by + byy/)* ",
k=0

Since F is irrational in (y'), (5.9) is divided into equations as follows:
{(b1 + b2y)?01 + a® E*(b1y — bo)*WiH{ay" + E*(asy’ — ay)}

(5.10) 4+ EHaE?(by + boy') (b1y — boz) K1 — a®(bry’ — ba)Wibjy,o}
=0,

{a(by + b2y’ K1 + a(by + bay') (b1y’ — b2)* P }{ay"
(5.11) + E*(agy’ — ay)} + E*{(b1 + bay')?(bry — bag) L1
— a?(by + bay/) (bry — ba) Pib} = 0.
Furthermore, (5.10) and (5.11) are rewritten in the form
ay’ + {1+ () Hazy' — ay)
= = {1+ @[+ )2 Hon + by by — o) B

(512) - a3(b1y/ . bQ)Wle;O] }/{(bl + b2y/)201 + CL2{1 + (yl)2}
(by' — b2)2W1},
ay” + {1+ (v')*}azy' — ay)
= - {{1 + (3/)2}[(51 + b2y ) (b1y — bay) L1
(5.13)

= a®{(b1 + by )01y’ — b2) P} b/ {abr + bay ) K
+ a(b1 + bgy')(bly’ — b2)2P1}.
Thus we have

THEOREM 5.3. Let F? be a two-dimensional Finsler space with an
approximate infinite series («, 3)-metric (2.7), where « is assumed to be
positive definite. If we refer to an isothermal coordinate system (x,y)
such that « = aF and E = \/1+ (y')?, then the differential equations
of a geodesic y = y(z) of F? are given by (5.12) and (5.13).

Next, we deal with the case where the associated Riemannian space
is Euclidean one with an orthonormal coordinate system. Then a = 1,
a; = 0 and ay = 0. If we take by and by such that by = 9b/0x and
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by = 0b/0y for a scalar b, then by, — by, = 0. Thus (5.12) and (5.13) are
reduced to
(5.12')
WA (¥')*}?(01y" — b2)Wa{(bra + biyy’) + (b2 + b2yy')y'}
(b1 + b2y')?O2 + {1 + (¥)*}Hbry' — b2)Wa ’

(5.13')
y' = {{1 +(y)?} (b1 + b2y ) (b1’ — b2) Po{(b1o + b1yy))

(o + by} b /{014 boy VP K+ (b1 4+ bay ) (ay' — 02)2 P2},

where

h
K2 _ Z 2k{1 + (y/)Z}k—l(bl + bgy/)Zh_2k,
k=1

h
Py=7 (2k = 1)2k{1+ ()} (bs + bay/)*" 2,
k=0
h
O2 = (2k+ 1){1+ (y)*}*(br + bay/)*" 2%,
k=0
h
Wa = 2k(2k + 1){1 + (y')* 1 (b1 + bay/)* ",
k=0

Thus we have the following

COROLLARY 5.4. Let F? be a two-dimensional Finsler space with
an approximate infinite series («, 3)-metric (2.7) whose associated Rie-
mannian space R? = (M?,a) is Euclidean such that a = 1 and a, =
ay = 0. If we refer to an orthonormal coordinate system (x,y) with
respect to a and by, — by = 0, where by = 0b/0x, by = 0b/0y for a
scalar b, then the differential equations of geodesics y = y(z) of F? are
given by (5.12') and (5.13').
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